Response of Optically Transparent pH Sensing Films to Temperature and Temperature Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solutions
2.3. Film Assembly
2.4. Characterization Methods
2.5. Atomic Force Microscopy (AFM)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bastarrachea, L.J.; Wong, D.E.; Roman, M.J.; Lin, Z.; Goddard, J.M. Active Packaging Coatings. Coatings 2015, 5, 771–791. [Google Scholar] [CrossRef]
- Wencel, D.; Abel, T.; McDonagh, C. Optical chemical pH sensors. Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S. Chemical Sensing Using Indicator Dyes. In Optical Fiber Sensors; Dakin, J., Culshaw, B., Eds.; Artech House: Boston, MA, USA, 1997; Volume IV, pp. 53–107. [Google Scholar]
- Krohn, D.A.; MacDougall, T.; Mendez, A. Fiber Optic Sensors: Fundamentals and Applications, 4th ed.; SPIE Press: Bellingham, WA, USA, 2014; pp. 233–253, 307–310. [Google Scholar]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Optical Fiber Sensors Based on Polymeric Sensitive Coatings. Polymers 2018, 10, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Layer-by-layer nano-assembly: A powerful tool for optical fiber sensing applications. Sensors 2019, 19, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, R.; James, S.; Lee, S.-W.; Morgan, S.P.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Decher, G. Layer-by-Layer Assembly (Putting Molecules to Work). In Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd ed.; Decher, G., Schlenoff, J.B., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 1, pp. 10–13. [Google Scholar]
- Marciu, D.; Miller, M.; Ritter, A.L.; Murray, M.A.; Neyman, P.J.; Graupner, W.; Heflin, J.R.; Wang, H.; Gibson, H.W.; Davis, R.M. Efficiency optimization in ionically self-assembled thin film polymer light-emitting diodes. In Light-Emitting Diodes: Research, Manufacturing, and Applications IV; Yao, H.W., Ferguson, I.T., Schubert, E.F., Eds.; Proceedings of SPIE: Bellingham, WA, USA, 2000; Volume 3938. [Google Scholar] [CrossRef]
- Figura, C.; Neyman, P.J.; Marciu, D.; Brands, C.; Murray, M.A.; Hair, S.; Davis, R.M.; Miller, M.; Heflin, J.R. Thermal stability and immersion solution dependence of second-order nonlinear optical ionically self-assembled films. In Organic Photonic Materials and Devices II; Bradley, D.D.C., Kippelen, B., Eds.; Proceedings of SPIE: Bellingham, WA, USA, 2000; Volume 3939, pp. 214–222. [Google Scholar]
- Bae, E.; Bhunia, A.K. Nano-Optical Sensors for Food Safety and Security. In Optochemical Nanosensors, 1st ed.; Cusano, A., Arregui, F.J., Giordano, M., Cutolo, A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 497–512. [Google Scholar]
- Shao, L.-Y.; Yin, M.-J.; Tam, H.-Y.; Albert, J. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings. Sensors 2013, 13, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Mermut, O.; Barrett, C.J. Stable sensor layers self-assembled onto surfaces using azobenzene-containing polyelectrolytes. Analyst 2001, 126, 1861–1865. [Google Scholar] [CrossRef] [PubMed]
- Corres, J.M.; Matias, I.R.; del Villar, I.; Arregui, F.J. Design of pH Sensors in Long-Period Fiber Gratings Using Polymeric Nanocoatings. IEEE Sens. J. 2007, 7, 455–463. [Google Scholar] [CrossRef]
- Goicoechea, J.; Zamarreño, C.R.; Matías, J.R.; Arregui, F.J. Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sens. Actuators B Chem. 2008, 132, 305–311. [Google Scholar] [CrossRef]
- Raoufi, N.; Surre, F.; Sun, T.; Grattan, K.T.V.; Rajarajan, M. Improvement of Optical Properties of pH- sensitive Nanolayers Coating Deposited using Layer-by-Layer Technique. In Proceedings of the 2012 IEEE SENSORS, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Raoufi, N.; Surre, F.; Rajarajan, M.; Sun, T.; Grattan, K.T.V. Optical sensor for pH monitoring using a layer-by-layer deposition technique emphasizing enhanced stability and re-usability. Sens. Actuators B Chem. 2014, 195, 692–701. [Google Scholar] [CrossRef]
- Topasna, D.M.; Topasna, G.; Liu, M.; Tseng, C.H. Conformal self-assembled thin films for optical pH sensors. In Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016; Varadan, V.K., Ed.; Proceedings of SPIE: Bellingham, WA, USA, 2016; Volume 9802, p. 98021Q. [Google Scholar]
- Fletcher, B.; Mullane, K.; Platts, P.; Todd, E.; Power, A.; Roberts, J.; Chapman, J.; Cozzolino, D.; Chandra, S. Advances in meat spoilage detection: A short focus on rapid methods and technologies. CyTA J. Food 2018, 16, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Clabaugh, K.C.; Silva, B.; Odigie, K.O.; Coble, M.D.; Loreille, O.; Scheible, M.; Fourney, R.M.; Stevens, J.; Carmody, G.R.; et al. Assessing a novel room temperature DNA storage medium for forensic biological samples. Forensic Sci. Int. Genet. 2012, 6, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olisekodiaka, M.J.; Onuegbu, A.J.; Ebesunun, O.M.; Agbedana, E.O.; Taylor, G.O. Effects of Storage Temperature, pH and Time on Urinary Albumin Level. Afr. J. Biomed. Res. 2011, 14, 73–75. [Google Scholar]
- Vernekar, N.V.; Jabannavar, V.B. Effect of storage and temperature on two biochemical analytes (creatinine and urea) in pooled serum samples stored at −20 °C. Indian J. Health Sci. Biomed. Res. 2017, 10, 63–67. [Google Scholar] [CrossRef]
- Egawa, Y.; Kayashida, R.; Anzai, J. Multilayered Assemblies Composed of Brilliant Yellow and Poly(allylamine) for an Optical pH Sensor. Anal. Sci. 2006, 22, 1117–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 91st ed.; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2010. [Google Scholar]
- Iler, R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; John Wiley & Sons: New York, NY, USA, 1979; pp. 624–629. [Google Scholar]
- Fujita, S.; Shiratori, S. The initial growth of ultra-thin films fabricated by a weak polyelectrolyte layer-by-layer adsorption process. Nanotechnology 2005, 16, 1821–1827. [Google Scholar] [CrossRef]
- Lobo, R.F.M.; Pereira-da-Silva, M.A.; Raposo, M.; Faria, R.M.; Oliveira, O.N., Jr. The morphology of layer-by-layer films of polymer/polyelectrolyte studied by atomic force microscopy. Nanotechnology 2003, 14, 101–108. [Google Scholar] [CrossRef]
- Raposo, M.; Lobo, R.F.M.; Pereira-da-Silva, M.A.; Faira, R.M.; Oliveira, O.N., Jr. Thickness and roughness measurements in poly(o-methoxyaniline) layer-by-layer films using AFM. In Proceedings of the 10th International Symposium on Electrets, Athens, Greece, 22–24 September 1999; pp. 533–536. [Google Scholar]
- Lobo, R.F.M.; Pereira-da-Silva, M.A.; Raposo, M.; Faria, R.M.; Oliveira, O.N., Jr. In situ thickness measurements of ultra-thin multilayer polymer films by atomic force microscopy. Nanotechnology 1999, 10, 389–393. [Google Scholar] [CrossRef]
- Chaplanova, Z.D.; Murauski, A.A.; Rogachev, A.A.; Agabekov, V.E.; Gracheva, E.A. Multi-Layered Anisotropic Films Based on the Azo Dye Brilliant Yellow and Organic Polymers. J. Appl. Spectrosc. 2013, 80, 658–662. [Google Scholar] [CrossRef]
Staining Process for PAH/DY (1 Bilayer) | ||||||
---|---|---|---|---|---|---|
Step | Bath # | Solution | Time (s) | Agitation | Time Over Bath (s) | Agitation |
1 | 1 | PAH Solution | 300 | N | 5 | Y |
2 | 2 | DI Water | 30 | Y | 5 | Y |
3 | 3 | DI Water | 30 | Y | 5 | Y |
4 | 6 | DI Water (flowing) | 30 | Y | 5 | Y |
5 | 10 | DY Solution | 300 | N | 5 | Y |
6 | 9 | DI Water | 30 | Y | 5 | Y |
7 | 8 | DI Water | 30 | Y | 5 | Y |
8 | 6 | DI Water (flowing) | 30 | Y | 5 | Y |
Average Roughness (nm) | Root Mean Square Roughness (nm) | |||
---|---|---|---|---|
Temperature (°C) | 10 μm × 10 μm | 500 nm × 500 nm | 10 μm × 10 μm | 500 nm × 500 nm |
−13.3 | 7.36 | 9.59 | 9.45 | 12 |
3.3 | 7.44 | 7.22 | 9.6 | 8.76 |
21 | 8.37 | 7.52 | 10.8 | 9.32 |
46.2 | 5.46 | 5.71 | 6.95 | 7.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topasna, D.M.; Topasna, G.A. Response of Optically Transparent pH Sensing Films to Temperature and Temperature Variations. Coatings 2020, 10, 18. https://doi.org/10.3390/coatings10010018
Topasna DM, Topasna GA. Response of Optically Transparent pH Sensing Films to Temperature and Temperature Variations. Coatings. 2020; 10(1):18. https://doi.org/10.3390/coatings10010018
Chicago/Turabian StyleTopasna, Daniela M., and Gregory A. Topasna. 2020. "Response of Optically Transparent pH Sensing Films to Temperature and Temperature Variations" Coatings 10, no. 1: 18. https://doi.org/10.3390/coatings10010018
APA StyleTopasna, D. M., & Topasna, G. A. (2020). Response of Optically Transparent pH Sensing Films to Temperature and Temperature Variations. Coatings, 10(1), 18. https://doi.org/10.3390/coatings10010018