Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paper
2.2. Atmospheric Pressure Plasma Treatment
2.3. Spraying
2.4. Wettability Measurement
2.5. Peel Test
2.6. Scanning Electron Microscopy
2.7. X-ray Photoelectron Spectroscopy
3. Results and Discussion
3.1. Wettability and Adhesion of Plasma-Treated and Silicone-Coated Paper
3.2. Morphology of the Plasma-Treated and Silicone-Coated Surface
3.3. Chemical Composition of the Plasma-Treated and Silicone-Coated Surface
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isoaho, T. Value Chain Analysis of Specialty Papers; Aalto University: Espoo, Finland, 2019. [Google Scholar]
- Bilodeau, M.A.; Hamilton, R.H. Release Paper and Method of Manufacture. U.S. Patent US20150125658A1, 7 May 2015. [Google Scholar]
- Belosinschi, D.; Chabot, B.; Brouillette, F. Release paper: Can phosphate esters be an alternative to silicone? BioResources 2012, 7, 902–912. [Google Scholar]
- Colas, A.; Cray, S. Silicones in Industrial Applications. In Inorganic Polymers; Gleria, M., De Jaeger, R., Eds.; Nova Science Publishers: New York, NY, USA, 2007; pp. 61–161. [Google Scholar]
- Vangeneugden, D.; Dubreuil, M.; Bongaers, E.; Hendrix, W. Atmospheric DBD plasma deposition of ECO-friedly release liners for pressure sensitive adhesive tapes. Contrib. Plasma Phys. 2009, 49, 648–654. [Google Scholar] [CrossRef]
- von Gradowski, S.; Torborg, C.; Biesalski, M. Preparation and characterization of cellulose-based barrier coatings for producing a release-liner out of a porous base paper. Cellulose 2019, 26, 1881–1894. [Google Scholar] [CrossRef]
- Holwell, A.J. Optimised Technologies Are Emerging Which Reduce Platinum Usage in Silicone Curing. Platin. Met. Rev. 2008, 52, 243–246. [Google Scholar] [CrossRef]
- Cray, S. Silicone release coatings for the pressure sensitive adhesive industry. In Silicones in Industrial Applications; Andriot, M., DeGroot, J.V., Meeks, R., Eds.; Nova Science Publisher: New York, NY, USA, 2009; pp. 38–43. [Google Scholar]
- Von Gradowski, S. Dissertation: Biogenic Polymers: From Barrier Coatings towards the Design of Novel Low-Adhesive Release Liner; Technical University: Darmstadt, Germany, 2019. [Google Scholar]
- Eduok, U.; Faye, O.; Szpunar, J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Štěpánová, V.; Kováčik, D.; Galmiz, O.; Tučeková, Z.; Zemánek, M.; Stupavská, M.; Kelar, J.; Vallade, J.; Černák, M. Industrial corona pre- and post-treatment for enhanced silicone coating of paper used as release liner. In Proceedings of the NANOCON 2017—Conference Proceedings, 9th International Conference on Nanomaterials—Research and Application, Brno, Czech Republic, 18–20 October 2017; pp. 271–276. [Google Scholar]
- Pykönen, M. Influence Plasma Modification on Surface Properties and Offset Printability; Åbo Akademi University: Turku, Finland, 2010. [Google Scholar]
- Garcia-Torres, J.; Sylla, D.; Molina, L.; Crespo, E.; Mota, J.; Bautista, L. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties. Appl. Surf. Sci. 2014, 305, 292–300. [Google Scholar] [CrossRef]
- Krumpolec, R.; Zemánek, M.; Tučeková, Z.; Kelar, J. Roll-to-roll surface etching of polymers using hydrogen plasma at atmospheric pressure. In Proceedings of the NANOCON 2017—Conference Proceedings, 9th International Conference on Nanomaterials—Research and Application, Brno, Czech Republic, 18–20 October 2017; pp. 283–288. [Google Scholar]
- Doubková, Z.; Tučeková, Z.; Kelar, J.; Krumpolec, R.; Zemánek, M. Modification of Various Polymer Surfaces Using Atmospheric Pressure Reducing Plasma. In Proceedings of the NANOCON2018 Conference Proceedings—10th Anniversary International Conference on Nanomaterials—Research and Application, Brno, Czech Republic, 17–19 October 2018; pp. 688–693. [Google Scholar]
- Černák, M.; Kováčik, D.; Ráhel’, J.; Sťahel, P.; Zahoranová, A.; Kubincová, J.; Tóth, A.; Černáková, L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion 2011, 53, 124031. [Google Scholar] [CrossRef]
- Galmiz, O.; Tucekova, Z.K.; Kelar, J.; Zemanek, M.; Stupavska, M.; Kovacik, D.; Cernak, M. Effect of atmospheric pressure plasma on surface modification of paper. AIP Adv. 2019, 9, 105013. [Google Scholar] [CrossRef]
- Arkles, B. Tailoring Surfaces with Silanes. Chem. Tech. 1977, 7, 766–778. [Google Scholar]
- Pocius, A.V. Adhesion and Adhesives Technology an Introduction, 3rd ed.; Carl Hanser Verlag: Munich, Germany, 2012. [Google Scholar]
- Sun, S.; Li, M.; Liu, A. A review on mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Panou, A.I.; Papadokostaki, K.G.; Tarantili, P.A.; Sanopoulou, M. Effect of hydrophilic inclusions on PDMS crosslinking reaction and its interrelation with mechanical and water sorption properties of cured films. Eur. Polym. J. 2013, 49, 1803–1810. [Google Scholar] [CrossRef]
- Vert, P.T.; Cray, S. Pressure sensitive tape council. In Proceedings of the TECH 30: Global Conference VI, Hyatt Regency Grand Cypress, Orlando, FL, USA, 16–18 May 2007; PSTC, Northbrook, Ill: Orlando, FL, USA, 2007; p. 302. [Google Scholar]
- Gomathi, N.; Mishra, I.; Varma, S.; Neogi, S. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications. Surf. Topogr. Metrol. Prop. 2015, 3, 35005. [Google Scholar] [CrossRef]
- Mošovská, S.; Medvecká, V.; Gregová, M.; Tomeková, J.; Valík, Ľ.; Mikulajová, A.; Zahoranová, A. Plasma inactivation of Aspergillus flavus on hazelnut surface in a diffuse barrier discharge using different working gases. Food Control 2019, 104, 256–261. [Google Scholar] [CrossRef]
- Yang, C.; Yuan, Y.J. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8. Appl. Surf. Sci. 2016, 364, 815–821. [Google Scholar] [CrossRef]
- Si, Z.; Li, J.; Ma, L.; Cai, D.; Li, S.; Baeyens, J.; Degrève, J.; Nie, J.; Tan, T.; Qin, P. The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet-Induced Polymerization. Angew. Chem. Int. Ed. 2019, 58, 17175–17179. [Google Scholar] [CrossRef]
- Černák, M.; Černáková, L.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009, 47, 22806. [Google Scholar] [CrossRef] [Green Version]
- Kormunda, M.; Homola, T.; Matousek, J.; Kovacik, D.; Cernak, M.; Pavlik, J. Surface analysis of poly(ethylene naphthalate) (PEN) films treated at atmospheric pressure using diffuse coplanar surface barrier discharge in air and in nitrogen. Polym. Degrad. Stab. 2012, 97, 547–553. [Google Scholar] [CrossRef]
- Hanusová, J.; Kováčik, D.; Stupavská, M.; Černák, M.; Novák, I. Atmospheric pressure plasma treatment of polyamide-12 foils. Open Chem. 2015, 13, 382–388. [Google Scholar] [CrossRef]
- Kováčik, D.; Maxa, J.; Skácelová, D.; Kršková, J.; Stupavska, M.; Zahoranová, A.; Černák, M. Low-cost and in-line plasma treatment of BOPP films. In Proceedings of the Sborník konference Plastko, Brno, Czech Republic, 20–21 April 2016; p. 12. [Google Scholar]
- Kovacik, D.; Skacelova, D.; Krskova, J.; Cernak, M. Modification of Polymer Surfaces by Atmospheric Pressure Plasmas. In Proceedings of the Hakone XV: International Symposium on High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-Equilibrium Plasmas with Liquids for Water and Surface Treatment, Brno, Czech Republic, 11–16 September 2016; Cernak, M., Hoder, T., Eds.; Masaryk University Press: Brno, Czech Republic, 2016; pp. 262–265. [Google Scholar]
- Kornacka, E.; Kozakiewicz, J.; Legocka, I.; Przybylski, J.; Przybytniak, G.; Sadło, J. Radical processes induced in poly(siloxaneurethaneureas) by ionising radiation. Polym. Degrad. Stab. 2006, 91, 2182–2188. [Google Scholar] [CrossRef]
- Cleland, M.R.; Parks, L.A.; Cheng, S. Applications for radiation processing of materials. In Ionizing Radiation and Polymers; Wertheimer, M.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 66–74. [Google Scholar]
- Miller, A.A. Radiation Chemistry of Polydimethylsiloxane. I. Crosslinking and Gas Yields. J. Am. Chem. Soc. 1960, 82, 3519–3523. [Google Scholar] [CrossRef]
- Hillborg, H.; Ankner, J.F.; Gedde, U.W.; Smith, G.D.; Yasuda, H.K.; Wikström, K. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer (Guildf) 2000, 41, 6851–6863. [Google Scholar] [CrossRef]
- Lee, D.; Yang, S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sens. Actuators B Chem. 2012, 162, 425–434. [Google Scholar] [CrossRef]
- Chen, J.T.; Fu, Y.J.; Tung, K.L.; Huang, S.H.; Hung, W.S.; Jessie Lue, S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. J. Memb. Sci. 2013, 440, 1–8. [Google Scholar] [CrossRef]
- Bao, C.; Xu, K.Q.; Tang, C.Y.; Lau, W.M.; Yin, C.B.; Zhu, Y.; Mei, J.; Lee, J.; Hui, D.; Nie, H.Y.; et al. Cross-linking the surface of cured polydimethylsiloxane via hyperthermal hydrogen projectile bombardment. ACS Appl. Mater. Interfaces 2015, 7, 8515–8524. [Google Scholar] [CrossRef]
- Novák, I.; Popelka, A.; Sedliacik, J.; Chodák, I.; Vanko, V.; Tóth, A.; JURKOVIČ, P.; PRACHÁR, J.; Sivova, M. Modification of the polyamide foil by Diffuse Coplanar Barrier Discharge plasma for furniture applications. For. Wood Technol. 2013, 83, 292–296. [Google Scholar]
Sample | Transfer Peel Force (N/cm) | % of Initial Transfer Peel Force | % of Initial Peel Force after Aging | ||
---|---|---|---|---|---|
Pretreat. (s) | Coating (mL) | Post-Treat. (s) | |||
0 | 0.5 | 0 | 5.0 ± 0.1 | 91.5 | 96.6 |
0 | 0.5 | 0.5 | 4.9 ± 0.1 | 88.5 | 92.8 |
0.5 | 0.5 | 0.5 | 4.9 ± 0.1 | 89.8 | 94.5 |
5 | 0.5 | 0.5 | torn | 100.0 | 104.4 |
0.25 | 0.5 | 0.25 | 5.1 ± 0.1 | 92.8 | 91.5 |
0.25 | 0.5 | 0.5 | torn | 100.0 | 94.8 |
0.25 | 0.5 | 5 | 5.3 ± 0.1 | 95.5 | 92.1 |
Sample | Transfer Peel Force (N/cm) | % of Initial Transfer Peel Force | % of Initial Peel Force after Aging | |||
---|---|---|---|---|---|---|
Pretreat. (s) | Coat. (mL) | Post-Treat. (s) | Runs | |||
0.25 | 0.25 | 0.25 | 1 | 4.8 ± 0.1 | 87.9 | 97.9 |
0.25 | 0.25 | 0.25 | 2 | torn | 100.0 | 100.3 |
0.25 | 0.25 | 0.25 | 3 | 4.8 ± 0.1 | 87.6 | 101.6 |
0.5 | 0.5 | 0.5 | 1 | 4.9 ± 0.1 | 89.8 | 94.5 |
0.5 | 0.5 | 0.5 | 2 | 4.2 ± 0.3 | 75.8 | 91.3 |
0.5 | 0.5 | 0.5 | 3 | 4.5 ± 0.2 | 81.5 | 98.8 |
0.5 | 0.5 | 0.5 | 1 | 5.0 ± 0.1 | 89.7 | 101.0 |
0.5 | 0.5 | 0.5 | 2 | 5.0 ± 0.1 | 90.4 | 97.8 |
0.5 | 0.5 | 0.5 | 3 | 4.9 ± 0.1 | 88.5 | 126.0 |
Sample | XPS (Atomic %) | |||||||
---|---|---|---|---|---|---|---|---|
Pretreat. (s) | Coating (mL) | Post-Treat. (s) | O | C | Si | Al | O/C | Si/C |
0 | 0 | 0 | 34 | 47 | 9 | 8 | 0.7 | 0.2 |
0.5 | 0 | 0 | 40 | 41 | 9 | 7 | 1.0 | 0.2 |
0 | 0.5 | 0 | 40 | 40 | 10 | 8 | 1.0 | 0.3 |
0.5 | 0.5 | 0 | 40 | 40 | 13 | 7 | 1.0 | 0.3 |
5 | 0.5 | 0 | 41 | 37 | 14 | 7 | 1.1 | 0.4 |
0.5 | 0.5 | 0.5 | 42 | 37 | 14 | 7 | 1.2 | 0.4 |
0.5 | 0.5 | 5 | 42 | 31 | 24 | 2 | 1.4 | 0.8 |
5 | 0.5 | 0.5 | 42 | 34 | 16 | 7 | 1.2 | 0.5 |
5 | 0.5 | 5 | 37 | 38 | 25 | 0 | 1.0 | 0.6 |
0.5 | 0.5 | 0.5 | 38 | 38 | 20 | 4 | 1.0 | 0.5 |
0.5 | 0.5 | 0.5 | 36 | 39 | 22 | 4 | 0.9 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelar Tučeková, Z.; Galmiz, O.; Kelar, J.; Kováčik, D.; Stupavská, M.; Šrámková, P.; Zemánek, M.; Vallade, J.; Černák, M. Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment. Coatings 2020, 10, 1102. https://doi.org/10.3390/coatings10111102
Kelar Tučeková Z, Galmiz O, Kelar J, Kováčik D, Stupavská M, Šrámková P, Zemánek M, Vallade J, Černák M. Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment. Coatings. 2020; 10(11):1102. https://doi.org/10.3390/coatings10111102
Chicago/Turabian StyleKelar Tučeková, Zlata, Oleksandr Galmiz, Jakub Kelar, Dušan Kováčik, Monika Stupavská, Petra Šrámková, Miroslav Zemánek, Julien Vallade, and Mirko Černák. 2020. "Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment" Coatings 10, no. 11: 1102. https://doi.org/10.3390/coatings10111102
APA StyleKelar Tučeková, Z., Galmiz, O., Kelar, J., Kováčik, D., Stupavská, M., Šrámková, P., Zemánek, M., Vallade, J., & Černák, M. (2020). Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment. Coatings, 10(11), 1102. https://doi.org/10.3390/coatings10111102