Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases
Abstract
:1. Introduction
2. Prototype Design and Assembly: PART I
2.1. System Architecture
2.2. Gas Sensor Signal Conditioning and Interfacing
2.3. Liquid Crystal Display (LCD) Conditioning and Interfacing
2.4. Program for Gas Sensors
2.4.1. Initialization of parameter:
- A = 0
- B = 0
- C = 0
2.4.2. Initialization of system:
2.4.3. Actual program call:
- i.
- X = (A, B, C) = CO2
- ii.
- Y = (A, B, C) = CH4
- iii.
- Z = (A, B, C) = H2S
- iv.
- N = Names
2.4.4. Function Return Definition:
- i.
- Function X = CO2{A = VariableB = VariableC = Variable}
- ii.
- Function Y = CH4{A = VariableB = VariableC = Variable}
- iii.
- Function Z = H2S{A = VariableB = VariableC = Variable}
- iv.
- Function N = Name{Display The Names}
3. Validation as Greenhouse Gas Sensor Module: PART II
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide. Available online: www.giss.nasa.gov (accessed on 16 November 2020).
- Vaclav Smil. The Earth’s Biosphere: Evolution, Dynamics, and Change; MIT Press: Cambridge, MA, USA, 2003; p. 107. ISBN 978-0-262-69298-4. [Google Scholar]
- IPCC. Annex III: Glossary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Planton, S., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC AR4 WG1; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Climate Change: Atmospheric Carbon Dioxide. NOAA Climate.gov. Available online: www.climate.gov (accessed on 16 November 2020).
- Deep Ice Tells Long Climate Story. BBC News, 4 September 2006. Retrieved 4 May 2010. Available online: http://news.bbc.co.uk/2/hi/science/nature/5314592.stm (accessed on 16 November 2020).
- Hileman, B. Ice Core Record Extended. Chem. Eng. News 2005, 83, 7. [Google Scholar] [CrossRef]
- Bowen, M. Thin Ice: Unlocking the Secrets of Climate in the World’s Highest Mountains; Owl Books: New York, NY, USA, 2006; ISBN 978-1429932707. [Google Scholar]
- Temperature Change and Carbon Dioxide Change; U.S. National Oceanic and Atmospheric Administration. Available online: https://www.ncdc.noaa.gov/global-warming/temperature-change (accessed on 16 November 2020).
- Global Greenhouse Gas Emissions Data; U.S. Environmental Protection Agency. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 16 November 2020).
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Enhanced Greenhouse Effect—Glossary. Nova. Australian Academy of Scihuman Impact on the Environment. 2006. Available online: https://www.science.org.au/curious/earth-environment/enhanced-greenhouse-effect (accessed on 16 November 2020).
- Hansen, J. A slippery slope: How much global warming constitutes “dangerous anthropogenic interference”? Clim. Chang. 2005, 68, 269–279. [Google Scholar] [CrossRef]
- Greenhouse Gas. Available online: https://en.wikipedia.org/wiki/Greenhouse_gas#cite_ref-11 (accessed on 16 November 2020).
- David, G.; Zhou, D. Climate Change 2014 Mitigation of Climate Change, Ch.1: Introductory Chapter. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf (accessed on 16 November 2020).
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolle, H.J.; Seiler, W.; Bolin, B. Other greenhouse gases and aerosols; assessing their role for atmospheric radiative transfer. In The Greenhouse Effect, Climatic Change and Ecosystems; Bolin, B., Doos, B.R., Warrick, B., Jager, D., Eds.; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Vilda, F. Feeding systems based on sugar cane. In Integration of Livestock with Crops in Response to Increasing Population Pressure on Available Resources; Preston, T.R., Rosales, M., Eds.; CTA: Wageningen, The Netherlands, 1989. [Google Scholar]
- Chansin, G.; Pugh, D. Environmental Gas Sensors 2017–2027: Technologies, Manufacturers, Forecasts. Scientific Report. 2017. Available online: www.idtechex.com/research/reports/environmental-gas-sensors-2017-2027-000500.asp (accessed on 16 November 2020).
- Jiang, L. Environmental Gas Sensors 2020–2030: Technologies, Manufacturers, Forecasts. Scientific Report. 2020. Available online: https://www.idtechex.com/en/research-report/environmental-gas-sensors-2020-2030/718 (accessed on 16 November 2020).
- Shaikh, S.F.; Ghule, B.G.; Nakate, U.T.; Shinde, P.V.; Ekar, S.U.; O’Dwyer, C.; Kim, K.H.; Mane, R.S. Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications. Sci. Rep. 2018, 8, 11016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghmare, S.D.; Raut, S.D.; Ghule, B.G.; Jadhav, V.V.; Shaikh, S.F.; Al-Enizi, A.M.; Ubaidullah, M.; Nafady, A.; Thamer, B.M.; Mane, R.S. Pristine and palladium-doped perovskite bismuth ferrites and theirnitrogen dioxide gas sensor studies. J. King Saud Univ. Sci. 2020, 32, 3125–3130. [Google Scholar] [CrossRef]
- Mehta, S.S.; Nadargi, D.Y.; Tamboli, M.S.; Chaudhary, L.S.; Patil, P.S.; Mulla, I.; Suryavanshi, S.S. Ru-Loaded mesoporous WO3 microflowers for dual applications: Enhanced H2S sensing and sunlight-driven photocatalysis. Dalton Trans. 2018, 47, 16840–16845. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.F.; Ghule, B.G.; Shinde, P.V.; Raut, S.D.; Gore, S.; Ubaidullah, M.; Mane, R.S.; Al-Enizi, A.M. Continuous hydrothermal flow-inspired synthesis and ultra-fast ammonia and humidity room-temperature sensor activities of WO3 nanobricks. Mater. Res. Express 2020, 7, 015076. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Tamboli, M.S.; Patil, S.S.; Dateer, R.B.; Mulla, I.S.; Choi, H.; Suryavanshi, S.S. Microwave-Epoxide-Assisted Hydrothermal Synthesis of the CuO/ZnO Heterojunction: A Highly Versatile Route to Develop H2S Gas Sensors. ACS Omega 2020, 5, 8587–8595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wang, Z.; Zhou, X.; Wu, X.; Han, N.; Chen, Y. Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors. RSC Adv. 2018, 8, 24268–24275. [Google Scholar] [CrossRef] [Green Version]
- Juang, F.-R.; Chern, W.-C.; Chen, B.-Y. Carbon dioxide gas sensing properties of ZnSn(OH)6-ZnO nanocomposites with ZnO nanorod structures. Thin Solid Films 2018, 660, 771–776. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Tran, M.-K.; Vrolyk, R.; Pope, M.A.; Fowler, M. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Khan, A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santhanam, K.S.V.; Ahamed, N.N.N. Greenhouse Gas Sensors Fabricated with New Materials for Climatic Usage: A Review. ChemEngineering 2018, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Maske, V.R.; Dhulap, V.P. Development of handy prototype gas sensors kit for monitoring of ambient greenhouse gases from solid waste disposal sites of Solapur city. In AIP Conference Proceedings; Emerging Technologies: Micro to Nano (ETMN-2017); AIP Publishing LLC: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
Site # | Latitude | Longitude |
---|---|---|
Large Containers Site | ||
Site LC-1 | 17°40′53.29″ N | 75°54′21.16″ E |
Site LC-2 | 17°40′50.12″ N | 75°54′15.34″ E |
Site LC-3 | 17°40′30.15″ N | 75°54′29.20″ E |
Site LC-4 | 17°40′21.66″ N | 75°54′2.48″ E |
Site LC-5 | 17°39′52.07″ N | 75°53′39.16″ E |
Open Sites | ||
Site OS-1 | 17°39′56.92″ N | 75°53′54.04″ E |
Site OS-2 | 17°40′43.66″ N | 75°54′43.29″ E |
Site OS-3 | 17°40′48.26″ N | 75°54′39.82″ E |
Site OS-4 | 17°40′58.51″ N | 75°54′12.75″ E |
Site OS-5 | 17°40′43.06″ N | 75°54′33″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mane, S.A.; Nadargi, D.Y.; Nadargi, J.D.; Aldossary, O.M.; S. Tamboli, M.; Dhulap, V.P. Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases. Coatings 2020, 10, 1148. https://doi.org/10.3390/coatings10121148
Mane SA, Nadargi DY, Nadargi JD, Aldossary OM, S. Tamboli M, Dhulap VP. Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases. Coatings. 2020; 10(12):1148. https://doi.org/10.3390/coatings10121148
Chicago/Turabian StyleMane, Supriya A., Digambar Y. Nadargi, Jyoti D. Nadargi, Omar M. Aldossary, Mohaseen S. Tamboli, and Vinayak P. Dhulap. 2020. "Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases" Coatings 10, no. 12: 1148. https://doi.org/10.3390/coatings10121148
APA StyleMane, S. A., Nadargi, D. Y., Nadargi, J. D., Aldossary, O. M., S. Tamboli, M., & Dhulap, V. P. (2020). Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases. Coatings, 10(12), 1148. https://doi.org/10.3390/coatings10121148