Investigating Hydrogen Separation in a Novel Rotating Carbon Nanotube–Carbon Nanocone Setup Using Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Setup
2.2. Nanocone Generation
2.3. Simulation Details
3. Results
3.1. Nanoslit Areas
3.2. The Role of the Applied Position Restraints
3.3. The Role of the Imposed Angular Velocity
3.4. 300 K Study Cases
3.5. 450K Study Cases
3.6. Total Flux
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Winter, M.; Brodd, J.R. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, G.; Araújo, T.; da Silva Lopes, T.; Sousa, J.; Mendes, A. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrogen Energy 2020, 45, 7313–7338. [Google Scholar] [CrossRef]
- Bailey, S.W.D.; Amanatidis, I.; Lambert, C.J. Carbon Nanotube Electron Windmills: A Novel Design for Nanomotors. Phys. Rev. Lett. 2008, 100, 256802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, W.; Zhu, S.; Guo, L.; Zhang, Z.; Li, P. The mechanisms study of the porous graphene for the purification of the mixed gases: A multi-scale computational method. Comput. Mater. Sci. 2018, 143, 277–285. [Google Scholar] [CrossRef]
- Esfandiarpoor, S.; Fazli, M.; Ganji, M.D. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci. Rep. 2017, 7, 16561. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Rajan, A.G.; Misra, R.P.; Drahushuk, L.W.; Agrawal, K.V.; Strano, M.S.; Blankschtein, D. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. ACS Nano 2017, 11, 7974–7987. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, L.; He, D.; Guo, T.; Li, X.; Chang, X.; Xue, Q. Two-dimensional graphene oxide membrane for H2/CH4 separation: Insights from molecular dynamics simulations. Int. J. Hydrogen Energy 2017, 42, 30653–30660. [Google Scholar] [CrossRef]
- Liu, Q.; Gupta, K.M.; Xu, Q.; Liu, G.; Jin, W. Gas permeation through double-layer graphene oxide membranes: The role of interlayer distance and pore offset. Sep. Purif. Technol. 2019, 209, 419–425. [Google Scholar] [CrossRef]
- Wang, P.; Li, W.; Du, C.; Zheng, X.; Sun, X.; Yan, Y.; Zhang, J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: Molecular dynamics simulation study. Comput. Mater. Sci. 2017, 140, 284–289. [Google Scholar] [CrossRef]
- Wang, S.; Dai, S.; Jiang, D. Continuously Tunable Pore Size for Gas Separation via a Bilayer Nanoporous Graphene Membrane. Appl. Nano Mater. 2019, 2, 379–384. [Google Scholar] [CrossRef]
- Raghavan, B.; Gupta, T. H2/CH4 Gas Separation by Variation in Pore Geometry of Nanoporous Graphene. J. Phys. Chem. C 2017, 121, 1904–1909. [Google Scholar] [CrossRef]
- Sun, C.; Wen, B.; Bai, B. Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 2015, 138, 616–621. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Z.; Dai, S.; Jiang, D. Effect of pore density on gas permeation through nanoporous graphene membranes. Nanoscale 2018, 10, 14660–14666. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Q.; Zhong, C.; Li, J. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl. Surf. Sci. 2017, 407, 532–539. [Google Scholar] [CrossRef]
- Jiang, D.; Cooper, V.R.; Dai, S. Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Lett. 2009, 9, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Hughes, Z.E.; Walsh, T.R. Computational Chemistry for Graphene-based Energy Applications: Progress and Challenges. Nanoscale 2015, 7, 6883–6908. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Li, D.; Ye, X.; Zheng, Y.; Zhang, Z.; Zhang, H.; Chen, Z. An adjustable permeation membrane up to the separation for multicomponent gas mixture. Sci. Rep. 2019, 9, 7380. [Google Scholar] [CrossRef]
- Sun, C.; Bai, B. Fast mass transport across two-dimensional graphene nanopores: Nonlinear pressure-dependent gas permeation flux. Chem. Eng. Sci. 2017, 165, 186–191. [Google Scholar] [CrossRef]
- Shan, M.; Xue, Q.; Jing, N.; Ling, C.; Zhang, T.; Yan, Z.; Zheng, J. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 2012, 4, 5477. [Google Scholar] [CrossRef]
- Sun, C.; Boutilier, M.S.H.; Au, H.; Poesio, P.; Bai, B.; Karnik, R.; Hadjiconstantinou, N.G. Mechanisms of Molecular Permeation through Nanoporous Graphene Membranes. Langmuir 2014, 30, 675–682. [Google Scholar] [CrossRef]
- Wesołowski, R.P.; Terzyk, A.P. Pillared graphene as a gas separation membrane. Phys. Chem. Chem. Phys. 2011, 13, 17027. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Xu, Z. Selective Gas Diffusion in Graphene Oxides Membranes: A Molecular Dynamics Simulations Study. ACS Appl. Mater. Interfaces 2015, 7, 9052–9059. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xue, Q.; Li, X.; Jin, Y.; Zheng, H.; Wu, T.; Guo, Q. Theoretical Prediction of Hydrogen Separation Performance of Two-Dimensional Carbon Network of Fused Pentagon. ACS Appl. Mater. Interfaces 2015, 7, 28502–28507. [Google Scholar] [CrossRef] [PubMed]
- Muraru, S.; Ionita, M. Super Carbonaceous Graphene-based structure as a gas separation membrane: A Non-Equilibrium Molecular Dynamics Investigation. Compos. B Eng. 2020, 196, 108140. [Google Scholar] [CrossRef]
- Boretti, A.; Al-Zubaidy, S.; Vaclavikova, M.; Al-Abri, M.; Castelleto, S.; Mikhalovsky, S. Outlook for graphene-based desalination membranes. NPJ Clean Water 2018, 1, 5. [Google Scholar] [CrossRef]
- Roy, K.; Mukherjee, A.; Maddela, N.R.; Chakraborty, S.; Shen, B.; Li, M.; Du, D.; Peng, Y.; Lu, F.; Garcia Cruzatty, L.C. Outlook on the bottlenecks of carbon nanotube in desalination and membrane-based water treatment—A review. J. Environ. Chem. Eng. 2020, 8, 103572. [Google Scholar] [CrossRef]
- JCrystalSoft. Nanotube Modeler: Generation of Nano-Geometries. Available online: https://www.jcrystal.com (accessed on 10 August 2020).
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity-rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Lemkul, J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package. LiveCoMS 2019, 1, 5068. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Dai, C.; Chen, S.; Tu, Y. Adsorption of GA module onto graphene and graphene oxide: A molecular dynamics simulation study. Physica E Low Dimens. Syst. Nanostruct. 2014, 62, 59–63. [Google Scholar] [CrossRef]
- Bokeh Development Team. Bokeh: Python Library for Interactive Visualization. Available online: https://bokeh.org (accessed on 21 September 2020).
- Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Domanski, J.; Dotson, D.L.; Buchoux, S.; Kenney, I.M.; et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th Python in Science Conference (SciPy), Austin, TX, USA, 11–17 July 2016; pp. 98–105. [Google Scholar] [CrossRef] [Green Version]
- Tu, Q.; Yang, Q.; Wang, H.; Li, S. Rotating carbon nanotube membrane filter for water desalination. Sci. Rep. 2016, 6, 26183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, R.; Momen, A.; Rouhi, S.; Ajori, S. On the Vibration of Single-Walled Carbon Nanocones: Molecular Mechanics Approach versus Molecular Dynamics Simulations. Shock Vib. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
Simulation | H2 Crossings | D (Å) | S (Å) | Ananoslit (Å2) | Aopening (Å2) | Total H2 Flux (mol/m2s) | 3 ns H2 Flux (mol/m2s) | Alternate H2 Flux (mol/m2s) | Alternate 3 ns H2 Flux (mol/m2s) |
---|---|---|---|---|---|---|---|---|---|
144 Å2 I | 0 | 2.59 | 1.93 | 144 | 114 | 0 | 0 | 0 | 0 |
171 Å2 I | 100 | 3.18 | 2.37 | 171 | 138 | 12,035 | 38,112 | 5125 | 16,230 |
205 Å2 I | 13 | 3.99 | 2.98 | 205 | 169 | 1276 | 3598 | 666 | 1879 |
270 Å2 I | 92 | 6.00 | 4.47 | 270 | 239 | 6404 | 15,779 | 4715 | 11,617 |
287 Å2 I | 176 | 6.74 | 5.02 | 287 | 261 | 11,183 | 28,806 | 9020 | 23,234 |
144 Å2 II | 0 | 2.59 | 1.93 | 144 | 114 | 0 | 0 | 0 | 0 |
180 Å2 II | 0 | 3.39 | 2.52 | 180 | 146 | 0 | 0 | 0 | 0 |
218 Å2 II | 15 | 4.35 | 3.25 | 218 | 182 | 2731 | 1821 | 1538 | 1025 |
262 Å2 II | 69 | 5.73 | 4.27 | 262 | 230 | 9972 | 13,729 | 7073 | 9738 |
289 Å2 II | 140 | 6.82 | 5.08 | 289 | 264 | 17,622 | 25,803 | 14,351 | 21,013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muraru, S.; Muraru, S.; Ionita, M. Investigating Hydrogen Separation in a Novel Rotating Carbon Nanotube–Carbon Nanocone Setup Using Molecular Dynamics Simulations. Coatings 2020, 10, 1207. https://doi.org/10.3390/coatings10121207
Muraru S, Muraru S, Ionita M. Investigating Hydrogen Separation in a Novel Rotating Carbon Nanotube–Carbon Nanocone Setup Using Molecular Dynamics Simulations. Coatings. 2020; 10(12):1207. https://doi.org/10.3390/coatings10121207
Chicago/Turabian StyleMuraru, Sorin, Sebastian Muraru, and Mariana Ionita. 2020. "Investigating Hydrogen Separation in a Novel Rotating Carbon Nanotube–Carbon Nanocone Setup Using Molecular Dynamics Simulations" Coatings 10, no. 12: 1207. https://doi.org/10.3390/coatings10121207
APA StyleMuraru, S., Muraru, S., & Ionita, M. (2020). Investigating Hydrogen Separation in a Novel Rotating Carbon Nanotube–Carbon Nanocone Setup Using Molecular Dynamics Simulations. Coatings, 10(12), 1207. https://doi.org/10.3390/coatings10121207