Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO
2.3. Preparation of Graphene Oxide/Polyaniline (GO/PANI) Nanocomposites
2.4. Preparation of Coatings
2.5. Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. XRD Analysis
3.3. FT-IR Analysis
3.4. UV–Vis Analysis
3.5. TGA Analysis
3.6. Electrochemical Measurement
3.6.1. Electrochemical Impedance Spectroscopy
3.6.2. Potentiodynamic Polarization Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alfinito, F.; Ruggiero, G.; Terrazzano, G.; Sica, M.; Udhayachandran, A.; Rubino, V.; Della Pepa, R.; Palatucci, A.T.; Annunziatella, M.; Notaro, R.; et al. Eculizumab treatment modifies the immune profile of PNH patients. Immunobiology 2012, 217, 698–703. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Lutkenhaus, J.L. Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide-poly(vinyl alcohol) coatings. Green Chem. 2018, 20, 506–514. [Google Scholar] [CrossRef]
- Olad, A.; Barati, M.; Behboudi, S. Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron. Prog. Org. Coat. 2012, 74, 221–227. [Google Scholar] [CrossRef]
- Armelin, E.; Alemán, C.; Iribarren, J.I. Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Prog. Org. Coat. 2009, 65, 88–93. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Alias, Y.; Basirun, W. Effect of narrow diameter polyaniline nanotubes and nanofibers in polyvinyl butyral coating on corrosion protective performance of mild steel. Prog. Org. Coat. 2012, 75, 301–308. [Google Scholar] [CrossRef]
- Honga, X.; Fu, J.; Liu, Y.; Li, S.; Wang, X.; Dong, W.; Yang, S. Recent progress on graphene/polyaniline composites for high-performance supercapacitors. Materials 2019, 12, 1451. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, P.P.; Jadhav, N.G.; Gelling, V.J.; Sazou, D. Conducting polymers for corrosion protection: A review. J. Coat. Technol. Res. 2014, 11, 473–494. [Google Scholar] [CrossRef]
- Nand, A.V.; Ray, S.; Easteal, A.J.; Waterhouse, G.I.; Gizdavic-Nikolaidis, M.; Cooney, R.P.; Travas-Sejdic, J.; Kilmartin, P.A. Factors affecting the radical scavenging activity of polyaniline. Synth. Met. 2011, 161, 1232–1237. [Google Scholar] [CrossRef]
- DeBerry, D.W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 1985, 132, 1022. [Google Scholar] [CrossRef]
- Jeyaprabha, C.; Sathiyanarayanan, S.; Venkatachari, G. Co-adsorption effect of polyaniline and halide ions on the corrosion of iron in 0.5M H2SO4 solutions. J. Electroanal. Chem. 2005, 583, 232–240. [Google Scholar] [CrossRef]
- Wessling, B. ChemInform abstract: Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes. ChemInform 2010, 25, 226–228. [Google Scholar] [CrossRef]
- Ammar, A.U.; Shahid, M.; Ahmed, M.K.; Khan, M.; Ammar, A.U.; Khan, Z.A. Electrochemical study of polymer and ceramic-based nanocomposite coatings for corrosion protection of cast iron pipeline. Materials 2018, 11, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozyilmaz, A.T.; Akdag, A.; Karahan, I.H.; Ozyilmaz, G.; Özyılmaz, A.T. Electrochemical synthesis of polyaniline films on zinc-cobalt alloy deposited carbon steel surface in sodium oxalate. Prog. Org. Coat. 2014, 77, 872–879. [Google Scholar] [CrossRef]
- Zhong, L.; Xiao, S.; Hu, J.; Zhu, H.; Gan, F. Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions. Corros. Sci. 2006, 48, 3960–3968. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Sonawane, N.; Siju, C. Epoxy powder coatings containing polyaniline for enhanced corrosion protection. Prog. Org. Coat. 2009, 64, 383–386. [Google Scholar] [CrossRef]
- De Souza, S. Smart coating based on polyaniline acrylic blend for corrosion protection of different metals. Surf. Coat. Technol. 2007, 201, 7574–7581. [Google Scholar] [CrossRef]
- Sheng, X.; Cai, W.; Zhong, L.; Xie, D.; Zhang, X. Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Ind. Eng. Chem. Res. 2016, 55, 8576–8585. [Google Scholar] [CrossRef]
- Özyılmaz, A.T.; Tuken, T.; Yazıcı, B.; Erbil, M. The electrochemical synthesis and corrosion performance of polyaniline on copper. Prog. Org. Coat. 2005, 52, 92–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.; Zhang, T.; Meng, G.; Wang, F. High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Prog. Org. Coat. 2013, 76, 804–811. [Google Scholar] [CrossRef]
- Kamaraj, K.; Karpakam, V.; Azim, S.; Sathiyanarayanan, S. Electropolymerised polyaniline films as effective replacement of carcinogenic chromate treatments for corrosion protection of aluminium alloys. Synth. Met. 2012, 162, 536–542. [Google Scholar] [CrossRef]
- Armelin, E.; Ocampo, C.; Liesa, F.; Iribarren, J.I.; Ramis, X.; Aleman, C. Study of epoxy and alkyd coatings modified with emeraldine base form of polyaniline. Prog. Org. Coat. 2007, 58, 316–322. [Google Scholar] [CrossRef]
- Zamiri, G.; Haseeb, A.S.M.A. Recent trends and developments in graphene/conducting polymer nanocomposites chemiresistive sensors. Materials 2020, 13, 3311. [Google Scholar] [CrossRef]
- Skowron, S.T.; Lebedeva, I.V.; Popov, A.M.; Bichoutskaia, E. Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 2015, 44, 3143–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, Y.; Ghoreishi, S.; Shabani-Nooshabadi, M. Polyaniline/graphene nanocomposite coatings on copper: Electropolymerization, characterization, and evaluation of corrosion protection performance. Synth. Met. 2016, 217, 220–230. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Hu, H.; Liu, Y.; Wang, Q.; Zhao, J.; Liang, Y. A study on the preparation of highly conductive graphene. Mater. Lett. 2011, 65, 2582–2584. [Google Scholar] [CrossRef]
- Fei, X.; Xia, L.; Chen, M.; Wei, W.; Luo, J.; Liu, X. Preparation and application of water-in-oil emulsions stabilized by modified graphene oxide. Materials 2016, 9, 731. [Google Scholar] [CrossRef]
- Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044–5051. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Lin, Y.-Y.; Lin, C.-H.; Chan, C.-C.; Huang, Y.-C. High-performance polystyrene/graphene- based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 2014, 5, 535–550. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Jeyasubramanian, K.; Premanathan, M.; Subbiah, G.; Shin, H.S.; Kim, S.J. Graphene oxide nanopaint. Carbon 2014, 72, 328–337. [Google Scholar] [CrossRef]
- Mooss, V.A.; Bhopale, A.A.; Deshpande, P.P.; Athawale, A.A. Graphene oxide-modified polyaniline pigment for epoxy based anti-corrosion coatings. Chem. Pap. 2017, 71, 1515–1528. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Don, T.-M.; Wong, C.-J.; Meng, F.-C.; Lin, Y.-J.; Lee, S.-Y.; Lee, C.-F.; Chiu, W.-Y. Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite. Surf. Coat. Technol. 2019, 374, 1128–1138. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Moghadam, M.M.; Shohani, N.; Mahdavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem. Eng. J. 2017, 320, 363–375. [Google Scholar] [CrossRef]
- Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520. [Google Scholar] [CrossRef]
- Sanches, E.; Soares, J.; Iost, R.M.; Marangoni, V.S.; Trovati, G.; Batista, T.; Mafud, A.; Zucolotto, V.; Mascarenhas, Y.P. Structural characterization of emeraldine-salt polyaniline/gold nanoparticles complexes. J. Nanomater. 2011, 697071–697078. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]
- Chen, X.; Meng, F.; Zhou, Z.; Tian, X.; Shan, L.; Zhu, S.; Xu, X.; Jiang, M.; Wang, L.; Hui, D.; et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014, 6, 8140–8148. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef]
- Shunaev, V.V.; Glukhova, O.E. Topology influence on the process of graphene functionalization by epoxy and hydroxyl groups. J. Phys. Chem. C 2016, 120, 4145–4149. [Google Scholar] [CrossRef]
- Almojil, D.; Arias, M.C.; Beasley, R.R.; Chen, Y.; Clark, R.W.; Dong, Y.; Dong, Z.; Forsdick, N.; Françoso, E.; González-Ortegón, E.; et al. Microsatellite records for volume 8, issue 2. Conserv. Genet. Resour. 2016, 8, 169–196. [Google Scholar] [CrossRef]
- Fu, C.; Zhao, G.; Zhang, H.; Li, S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-Ion batteries. Int. J. Electrochem. Sci. 2013, 8, 6269–6280. [Google Scholar]
- Maurya, R.; Gupta, A.; Omar, S.; Balani, K. Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceram. Int. 2016, 42, 11393–11403. [Google Scholar] [CrossRef]
- Mahato, N.; Parveen, N.; Cho, M.H. Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Mater. Lett. 2015, 161, 372–374. [Google Scholar] [CrossRef]
- Yang, T.-I.; Peng, C.-W.; Lin, Y.L.; Weng, C.-J.; Edgington, G.; Mylonakis, A.; Huang, T.-C.; Hsu, C.-H.; Yeh, J.-M.; Wei, Y. Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of xanthosoma sagittifolium leaf. J. Mater. Chem. 2012, 22, 15845–15852. [Google Scholar] [CrossRef]
- Chaudhari, S.; Patil, P. Inhibition of nickel coated mild steel corrosion by electrosynthesized polyaniline coatings. Electrochim. Acta 2011, 56, 3049–3059. [Google Scholar] [CrossRef]
Sample | Ecorr(V) | Icorr(A/cm2) | Corrosion Rate (mm/Year) |
---|---|---|---|
bare steel | −0.813 | 3.64 × 10−4 | 4.24 |
pure epoxy | −0.704 | 6.83 × 10−6 | 7.96 × 10−2 |
epoxy/GO | −0.548 | 1.79 × 10−8 | 2.09 × 10−4 |
epoxy/PANI | −0.569 | 3.98 × 10−7 | 4.64 × 10−3 |
epoxy/PANI–GO(1 wt.%) | −0.426 | 6.72 × 10−8 | 7.83 × 10−4 |
epoxy/PANI–GO(2 wt.%) | −0.419 | 2.09 × 10−8 | 2.44 × 10−4 |
epoxy/PANI–GO(3 wt.%) | −0.375 | 7.82 × 10−9 | 9.12 × 10−5 |
epoxy/PANI–GO(4 wt.%) | −0.403 | 4.68 × 10−9 | 5.46 × 10−5 |
epoxy/PANI–GO(5 wt.%) | −0.378 | 1.17 × 10−8 | 1.36 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhu, S.; Hong, R. Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 2020, 10, 1215. https://doi.org/10.3390/coatings10121215
Yang S, Zhu S, Hong R. Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings. 2020; 10(12):1215. https://doi.org/10.3390/coatings10121215
Chicago/Turabian StyleYang, Shuanqiang, Shu Zhu, and Ruoyu Hong. 2020. "Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection" Coatings 10, no. 12: 1215. https://doi.org/10.3390/coatings10121215
APA StyleYang, S., Zhu, S., & Hong, R. (2020). Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings, 10(12), 1215. https://doi.org/10.3390/coatings10121215