Laser Shock Induced Deformation of Copper Foil on Diverse Molds and the Cross-Sectional Microstructure Changes
Abstract
:1. Introduction
2. Experimental Details
2.1. Material Preparation and Principle
2.2. Experimental Apparatuses
3. Results and Discussion
3.1. The Morphological Analysis of Copper Foil Deformation after Laser Shock
3.2. The Analysis of Mechanical Properties and Laser Shock Forming Mechanism of Copper Foil
3.3. The Analysis of Cross-Sectional Deformation and Microstructure Change of Copper Foil after Laser Shock
4. Conclusions
- (1)
- Three sizes of hexagonal structures were successfully manufactured on copper foil by the laser shock process. The depth of hexagonal structures increased with the increasing of pulse laser energy, and the copper foil on the 50# mold formed deeper hexagonal structures under the same pulse laser energy.
- (2)
- The mechanical properties of the copper foil on the hexagon side of the mold were improved after laser shock. The copper foil generated severe plastic deformations and was bent at the right angle of the hexagon side, in which the copper foil became thin.
- (3)
- The cross-sectional microstructure of the copper foil changed after laser shock. The grains of the copper foil were refined by shock wave pressure.
Author Contributions
Funding
Conflicts of Interest
References
- Gao, H.; Hu, Y.; Xuan, Y.; Li, J.; Yang, Y.; Martinez, R.V.; Li, C.; Luo, J.; Qi, M.; Cheng, G.J. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 2014, 346, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Tahan, G.; Arrigoni, M.; Bidaud, P.; Videau, L.; Thevenet, D. Evolution of failure pattern by laser induced shockwave within an adhesive bond. Opt. Laser Technol. 2020, 129, 106224. [Google Scholar] [CrossRef]
- Ngiejunbwen, L.A.; Shangguan, J.; Asamoah, E.; Ren, Y.; Ye, Y.; Tong, Y. Experimental investigation of sheet metal forming of Aluminum 2024 using nanosecond pulsed Nd: YAG laser. Opt. Laser Technol. 2021, 133, 106528. [Google Scholar] [CrossRef]
- Man, J.; Zhao, J.; Yang, H.; Song, L.; Liu, D. Study on laser shock imprinting nanoscale line textures on metallic foil and its application in nanotribology. Mater. Des. 2020, 193, 108822. [Google Scholar] [CrossRef]
- Hu, Y.; Kumar, P.; Xu, R.; Zhao, K.; Cheng, G.J. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays. Nanoscale 2016, 8, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, X.; Shen, Z.; Li, C.; Sha, C.; Li, L.; Gao, S.; Ma, Y.; Wang, X. The size effect on deformation behavior in microscale laser shock flexible drawing. Opt. Laser Technol. 2016, 86, 93–102. [Google Scholar] [CrossRef]
- Zheng, C.; Sun, S.; Zhang, G.; Song, L.; Ji, Z. Effect of confining overlay in micro scale laser bulge forming. Appl. Surf. Sci. 2013, 285, 477–482. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, T.; Shen, Z.; Zhang, D.; Ma, Y.; Gu, Y.; Liu, H. Forming properties of a microscale laser dynamic flexible forming technique. Mater. Manuf. Process. 2016, 31, 745–750. [Google Scholar] [CrossRef]
- Ehrhardt, M.; Lorenz, P.; Lotnyk, A.; Romanus, H.; Thelander, E.; Zimmer, K. Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing. Phys. Procedia 2014, 56, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Cheng, G.J. Scalable patterning on shape memory alloy by laser shock assisted direct imprinting. Appl. Surf. Sci. 2012, 258, 10042–10046. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, F.; Liu, K.; Man, J.; Chen, H.; Liu, H.; Hao, J. Research on temperature-assisted laser shock imprinting and forming stability. Opt. Lasers Eng. 2019, 114, 95–103. [Google Scholar]
- Shen, N.; Ding, H.; Bowers, R.; Yu, Y.; Pence, C.N.; Ozbolat, I.T.; Stanford, C.M. Surface micropatterning of pure titanium for biomedical applications via high energy pulse laser peening. J. Micro Nano-Manuf. 2015, 3, 011005. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Shen, Z.; Sha, C.; Gao, S.; Li, C.; Sun, X.; Ma, Y.; Liu, H. Experimental investigation on: Laser shock micro-forming process using the mask and flexible pad. Opt. Lasers Eng. 2017, 88, 102–110. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Gu, C.; Zhang, D.; Gu, Y.; Liu, H. Laser indirect shock micro-embossing of commercially pure copper and titanium sheet. Opt. Lasers Eng. 2014, 56, 74–82. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.J.; Jiang, H.; Cheng, G.J. Scalable nano-patterning of graphenes using laser shock. Nanotechnology 2011, 22, 475303. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Yang, H.; Wang, Y.; Chen, H.; Xiong, F. Study on controllable surface morphology of the micro-pattern fabricated on metallic foil by laser shock imprinting. Opt. Laser Technol. 2019, 119, 105669. [Google Scholar] [CrossRef]
- Nagarajan, B.; Castagne, S.; Wang, Z.K. Investigation of copper foil thinning behavior by flexible-pad laser shock forming. Key Eng. Mater. 2013, 535–536, 306–309. [Google Scholar] [CrossRef]
- Fabbro, R.; Fournier, J.; Ballard, P.; Devaux, D.; Virmont, J. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 1990, 68, 775–784. [Google Scholar] [CrossRef]
- Lu, Q.; Shinsuke, I.; Wang, F.; Zhang, C.; Lu, Y.; Nastasi, M.; Cui, B. Influence of laser shock peening on irradiation defects in austenitic stainless steels. J. Nucl. Mater. 2017, 489, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Wang, X.; Tian, Z.; He, W.; Shi, X.; Chen, P.; Zhou, L. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4V titanium alloy subjected to laser shock peening. J. Alloy. Compd. 2021, 850, 156672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Man, J. Laser Shock Induced Deformation of Copper Foil on Diverse Molds and the Cross-Sectional Microstructure Changes. Coatings 2020, 10, 1264. https://doi.org/10.3390/coatings10121264
Huang D, Man J. Laser Shock Induced Deformation of Copper Foil on Diverse Molds and the Cross-Sectional Microstructure Changes. Coatings. 2020; 10(12):1264. https://doi.org/10.3390/coatings10121264
Chicago/Turabian StyleHuang, Di, and Jiaxiang Man. 2020. "Laser Shock Induced Deformation of Copper Foil on Diverse Molds and the Cross-Sectional Microstructure Changes" Coatings 10, no. 12: 1264. https://doi.org/10.3390/coatings10121264
APA StyleHuang, D., & Man, J. (2020). Laser Shock Induced Deformation of Copper Foil on Diverse Molds and the Cross-Sectional Microstructure Changes. Coatings, 10(12), 1264. https://doi.org/10.3390/coatings10121264