Physiochemical Effects of SiC and ZrO2 Particle Fillers on the Properties of Enamel Coatings
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Enamel Coating
2.2. Evaluation of Enamel Coating Properties
2.3. Contamination on Enamel Coating and Cleaning Test
3. Results and Discussions
3.1. Changes in the Fundamental Surface Properties
3.1.1. Roughness
3.1.2. Contact Angle
3.2. Microstructural and Elemental Analysis
3.3. Washability of Enamel Coatings and Its Relation to Surface Properties
3.4. Surface Change in Enamel Coating After Burnt Contamination Cleaning
4. Conclusions
- The presence of SiC/ZrO2 filler not only changes surface roughness but also changes the surface crystallography, which in turn influences the contact angle and washability.
- For the enamel powers with sizes of 30–40 μm, 3 μm SiC powders increase the surface roughness when sufficient amount is added. In contrast, a small powder of 500 nm ZrO2 infiltrates the voids between enamel powders and causes a negligible change in the roughness.
- The contact angle is affected by the roughness and the chemical composition of the surface. Both roughness and chemical composition played a role for SiC, while only chemical composition played a major role for ZrO2.
- Both roughness and morphology of the surface are responsible for the change in the washability. The washability is notably augmented at 0.1 wt %, which corresponds to the content where the drastic microstructure change (and the contact angle) occurred.
- The changes in the surface crystallography are observed with the presence of the fillers. Al, Ce, Ca, and P aggregates showed significant changes (see main text for each change).
- The Ca aggregates was observed in a needle-shape in NF and 0.03-0.05 wt %. This phase is reactive with phosphates in the contamination during the firing process and makes the removal of contamination more difficult.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rossi, S.; Parziani, N.; Zanella, C. Abrasion resistance of vitreous enamel coatings in function of frit composition and particles presence. Wear 2015, 332–333, 702–709. [Google Scholar] [CrossRef]
- Rossi, S.; Scrinzi, E. Evaluation of the abrasion resistance of enamel coatings. Chem. Eng. Process. Process Intensif. 2013, 68, 74–80. [Google Scholar] [CrossRef]
- Scrinzi, E.; Rossi, S. The aesthetic and functional properties of enamel coatings on steel. Mater. Des. 2010, 31, 4138–4146. [Google Scholar]
- Yang, H.; Chen, C.; Sun, H.; Lu, H.; Hu, X. Influence of heat-treatment schedule on crystallization and microstructure of bauxite tailing glass–ceramics coated on tiles. J. Mater. Process. Technol. 2008, 197, 206–211. [Google Scholar] [CrossRef]
- Kim, M.T.; Chang, S.Y.; Won, J.B.; Park, H.W. Effect of hot isostatic pressing on the microstructure and mechanical properties of vitreous enamel coatings on low carbon steel. Surf. Coat. Technol. 2006, 201, 3281–3288. [Google Scholar] [CrossRef]
- Tang, F.; Chen, G.; Volz, J.S.; Brow, R.K.; Koenigstein, M. Microstructure and corrosion resistance of enamel coatings applied to smooth reinforcing steel. Constr. Build. Mater. 2012, 35, 376–384. [Google Scholar] [CrossRef]
- Wang, D. Effect of crystallization on the property of hard enamel coating on steel substrate. Appl. Surf. Sci. 2009, 255, 4640–4645. [Google Scholar] [CrossRef]
- Shao, H.; Liang, K.; Zhou, F.; Wang, G.; Hu, A. Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass–ceramics. Mater. Res. Bull. 2005, 40, 499–506. [Google Scholar] [CrossRef]
- Tkalcec, E.; Kurajica, S.; Ivankovic, H. Crystallization behavior and microstructure of powdered and bulk ZnO–Al2O3–SiO2 glass-ceramics. J. Non-Cryst. Solids 2005, 351, 149–157. [Google Scholar] [CrossRef]
- Le Bris, S.; Dubanchet, A.; Perillon, J.-L. Cooking Item Comprising a Non-Stick coating with Improved Properties of Adhesion to the Substrate. U.S. Patent 9,199,275, 6 August 2013. [Google Scholar]
- Mostefaı̈, M.; Auriac, Y.; Shanahan, M.E.R.; Bressan, J.; Meslif, A. Use of fluoroalkylsilanes as non-stick coatings for thermal by-products of linoleic acid. Int. J. Adhes. Adhes. 2000, 20, 257–261. [Google Scholar] [CrossRef]
- Rossi, S.; Gai, G.; De Benedett, R. Functional and perceptive aspects of non-stick coatings for cookware. Mater. Des. 2014, 53, 782–790. [Google Scholar] [CrossRef]
- Rossi, S.; Zanella, C.; Sommerhuber, R. Influence of mill additives on vitreous enamel properties. Mater. Des. 2014, 55, 880–887. [Google Scholar] [CrossRef]
- Ryabova, A.V.; Es’kova, T.A.; Karandashova, N.S.; Yatsenko, E.A.; Smolii, V.A. Development of a Method for Improving the Performance Properties of Glass-Enamel Coatings for Steel. Glass Ceram. 2015, 71, 327–329. [Google Scholar] [CrossRef]
- Tang, F.; Chen, G.; Brow, R.K.; Volz, J.S.; Koenigstein, M.L. Corrosion resistance and mechanism of steel rebar coated with three types of enamel. Corros. Sci. 2012, 59, 157–168. [Google Scholar] [CrossRef]
- Tang, F.; Chen, G.; Volz, J.S.; Brow, R.K.; Koenigstein, M.L. Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars. Cem. Concr. Compos. 2013, 35, 171–180. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, F.; Wu, W. Effect of Al2O3 and enamel coatings on 900 °C oxidation and hot corrosion behaviors of gamma-TiAl. Mater. Sci. Eng. A 2000, 276, 70–75. [Google Scholar] [CrossRef]
- TÜRKÜN, M.; Sevgican, F.; Pehlivan, Y.; Aktener, B.O. Effects of 10% carbamide peroxide on the enamel surface morphology: A scanning electron microscopy study. J. Esthet. Restor. Dent. 2002, 14, 238–244. [Google Scholar] [CrossRef]
- Ling, G.; He, J. The influence of nano-Al2O3 additive on the adhesion between enamel and steel substrate. Mater. Sci. Eng. A 2004, 379, 432–436. [Google Scholar] [CrossRef]
- Rashwan, M.; Cattell, M.J.; Hill, R.G. The effect of barium content on the crystallization and microhardness of barium fluormica glass-ceramics. J. Eur. Ceram. Soc. 2019, 39, 2559–2565. [Google Scholar] [CrossRef]
- Goel, A.; Tulyaganov, D.U.; Agathopoulos, S.; Ferreira, J.M.F. The effect of Al2O3 on sintering and crystallization of MgSiO3-based glass-powder compacts. Ceram. Int. 2008, 34, 505–510. [Google Scholar] [CrossRef]
- Rossi, S.; Calovi, M.; Velez, D.; Munoz, J. Munoz, Influence of addition of hard particles on the mechanical and chemical behavior of vitreous enamel. Surf. Coat. Technol. 2019, 357, 69–77. [Google Scholar] [CrossRef]
- Benford, A.L.; Gorecki, A.; Gazo, L.J.; Baldwin, C.A. Enamel and Ground Coat Compositions. U.S. Patent 8,962,162, 15 July 2014. [Google Scholar]
- Espargilliere, S.; Schanne, A.; Roques, F. Enamel Composition. CA Patents 2,409,576, 28 February 2006. [Google Scholar]
- Aronica, A.; Coutouly, D.; Macaya, D.; Caisse, R. Hybrid Coating Compositions. CA Patents 2,409,567, 11 September 2001. [Google Scholar]
- Haynes, W.M. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
Components | Contents (wt %) |
---|---|
SiO2 | 55.4 |
Na2O | 14.9 |
B2O3 | 14.8 |
TiO2 | 2.87 |
NiO | 2.66 |
Al2O3 | 1.8 |
SrO | 1.37 |
Li2O | 1.06 |
K2O | 0.98 |
Filler | Manufacturer | Particle Diameter (um) | BET (m2/g) |
---|---|---|---|
SiC | Sinxing Advanced Material Ltd. (Hongkong, China) | 2.61 ± 1.68 | 3.17 |
ZrO2 | Sinocera (Shandong, China) | 0.51 ± 0.38 | 9.07 |
Contents | Quantity | Units |
---|---|---|
Cherry (Canister) | 200 | mL |
Tomato juice | 200 | mL |
Egg (yolk) | 6-7 | Counts |
Milk (2%) | 112 | g |
Tapioca (powder) | 5 | g |
Pork fat | 112 | g |
Cheese | 112 | g |
Filler Type | Contents (wt %) | Contact Angle ( ° ) | Washability (%) | |
---|---|---|---|---|
No Filler (NF) | 0.00 | 62.4 ± 2.7 | 1.67 ± 0.13 | 80.9 ± 2.1 |
SiC | 0.03 | 52.8 ± 1.4 | 1.62 ± 0.13 | 77.9 ± 3.5 |
0.05 | 55.6 ± 1.5 | 1.70 ± 0.20 | 78.2 ± 1.8 | |
0.10 | 64.0 ± 1.7 | 2.10 ± 0.20 | 94.1 ± 2.4 | |
ZrO2 | 0.03 | 46.9 ± 4.4 | 1.81 ± 0.15 | 78.6 ± 4.7 |
0.05 | 45.6 ± 2.1 | 1.45 ± 0.17 | 76.5 ± 8.0 | |
0.10 | 61.2 ± 2.8 | 1.55 ± 0.14 | 98.1 ± 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, H.; Lee, S.-J.; Oh, J.-J.; Lee, S.; Lim, H.M. Physiochemical Effects of SiC and ZrO2 Particle Fillers on the Properties of Enamel Coatings. Coatings 2020, 10, 121. https://doi.org/10.3390/coatings10020121
Ko H, Lee S-J, Oh J-J, Lee S, Lim HM. Physiochemical Effects of SiC and ZrO2 Particle Fillers on the Properties of Enamel Coatings. Coatings. 2020; 10(2):121. https://doi.org/10.3390/coatings10020121
Chicago/Turabian StyleKo, Hyunseok, Sung-Jin Lee, Jae-Jong Oh, Seungho Lee, and Hyung Mi Lim. 2020. "Physiochemical Effects of SiC and ZrO2 Particle Fillers on the Properties of Enamel Coatings" Coatings 10, no. 2: 121. https://doi.org/10.3390/coatings10020121
APA StyleKo, H., Lee, S. -J., Oh, J. -J., Lee, S., & Lim, H. M. (2020). Physiochemical Effects of SiC and ZrO2 Particle Fillers on the Properties of Enamel Coatings. Coatings, 10(2), 121. https://doi.org/10.3390/coatings10020121