High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Zhu, H.; Li, B.; Isikgor, F.H.; Hao, Y.; Xu, Q.; Ouyang, J. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 2016, 4, 887–893. [Google Scholar] [CrossRef]
- Xiao, J.; Chang, J.; Li, B.; Isikgor, F.H.; Wang, D.; Fan, Z.; Lin, Z.; Ouyang, J.; Zeng, K.; Chen, J. Room temperature ferroelectricity of hybrid organic–inorganic perovskites with mixed iodine and bromine. J. Mater. Chem. A 2018, 6, 9665–9676. [Google Scholar] [CrossRef]
- Chang, J.; Xiao, J.; Lin, Z.; Zhu, H.; Xu, Q.-H.; Zeng, K.; Hao, Y.; Ouyang, J. Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. J. Mater. Chem. A 2016, 4, 17464–17472. [Google Scholar] [CrossRef]
- Su, J.; Zhang, Z.; Hou, J.; Liu, M.; Lin, Z.; Hu, Z.; Chang, J.; Hao, Y. Pressure-dependent mechanical and thermal properties of lead-free halide double perovskite Cs2AgB″X6 (B″ = In, Bi; X = Cl, Br, I). Adv. Theory Simul. 2019, 2, 1900164. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, J.; Hou, J.; Lin, Z.; Hu, Z.; Chang, J.; Zhang, J.; Hao, Y. Potential applications of halide double perovskite Cs2AgInX6 (X = Cl, Br) in flexible optoelectronics: Unusual effects of uniaxial strains. J. Phys. Chem. Lett. 2019, 10, 1120–1125. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Nazeeruddin, M.K.; Grätzel, M.; Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 2017, 10, 808–817. [Google Scholar] [CrossRef]
- Bi, D.; Yi, C.; Luo, J.; Décoppet, J.D.; Zhang, F.; Zakeeruddin, S.M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, Z.; Ning, Z.; Li, T.; Guo, X.; Ma, J.; Su, J.; Zhang, C.; Zhang, J.; Liu, S.; et al. Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 2019, 1900293. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, L.; Lin, Z.; Wang, J.; Su, J.; Hu, Z.; Zhang, J.; Ouyang, X.; Chang, J.; Hao, Y. Theoretical analysis of two-terminal and four-terminal perovskite/CIGS tandem solar cells. Sol. RRL 2019, 1900303. [Google Scholar] [CrossRef]
- Zhao, P.; Yue, M.; Lei, C.; Lin, Z.; Su, J.; Chen, D.; Zhang, C.; Zhang, J.; Chang, J.; Hao, Y. Device simulation of organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cell with various antireflection materials. IEEE J. Photovolt. 2018, 8, 1685–1691. [Google Scholar] [CrossRef]
- Ma, J.; Su, J.; Lin, Z.; Zhou, L.; He, J.; Zhang, J.; Liu, S.; Chang, J.; Hao, Y. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020, 67, 104241. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, H.; Xiao, J.; Isikgor, F.H.; Lin, Z.; Hao, Y.; Zeng, K.; Xu, Q.-H.; Ouyang, J. Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. J. Mater. Chem. A 2016, 4, 7943–7949. [Google Scholar] [CrossRef]
- Chang, J.; Lin, Z.; Zhu, H.; Isikgor, F.H.; Xu, Q.-H.; Zhang, C.; Hao, Y.; Ouyang, J. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. J. Mater. Chem. A 2016, 4, 16546–16552. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Z.; Guo, X.; He, J.; Hu, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. Low temperature ZnO/TiOx electron-transport layer processed from aqueous solution for highly efficient and stable planar perovskite solar cells. Mater. Today Energy 2019, 14, 100351. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S. Il Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S. Il Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Huang, X.; Du, J.; Guo, X.; Lin, Z.; Ma, J.; Su, J.; Feng, L.; Zhang, C.; Zhang, J.; Chang, J.; et al. Polyelectrolyte-doped SnO2 as a tunable electron transport layer for high-efficiency and stable perovskite solar cells. Sol. RRL 2020, 4, 1900336. [Google Scholar] [CrossRef]
- Lin, Z.; Chang, J.; Zhu, H.; Xu, Q.-H.; Zhang, C.; Ouyang, J.; Hao, Y. Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Sol. Energy Mater. Sol. Cells 2017, 172, 133–139. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, J.; Lin, Z.; Zhou, L.; Yang, Z.; Chen, D.; Zhang, C.; Liu, S.F.; Hao, Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Z.; Guo, X.; Zhou, L.; Su, J.; Zhang, C.; Yang, Z.; Chang, J.; (Frank) Liu, S.; Hao, Y. Low-temperature solution—Processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol. RRL 2019, 3, 1900096. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Feng, D.; Lin, Z.; Zhang, J.; Hao, Y.; Fan, X.; Chang, J. Achieving high performance and stable inverted planar perovskite solar cells using lithium and cobalt co-doped nickel oxide as hole transport layers. J. Mater. Chem. C 2019, 7, 9270–9277. [Google Scholar] [CrossRef]
- Zhang, S.; Su, J.; Lin, Z.; Tian, K.; Guo, X.; Zhang, J.; Chang, J.; Hao, Y. Beneficial role of organolead halide perovskite CH3 NH3 PbI3/SnO2 interface: Theoretical and experimental study. Adv. Mater. Interfaces 2019, 6, 1900400. [Google Scholar] [CrossRef]
- Guo, X.; Lin, Z.; Ma, J.; Hu, Z.; Su, J.; Zhang, C.; Zhang, J.; Chang, J.; Hao, Y. Low temperature combustion synthesized indium oxide electron transport layer for high performance and stable perovskite solar cells. J. Power Sources 2019, 438, 226981. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, X.; Lin, Z.; Ma, J.; Su, J.; Hu, Z.; Zhang, C.; Liu, S.F.; Chang, J.; Hao, Y. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 2019, 60, 583–590. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784. [Google Scholar] [CrossRef]
- You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.M.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2015, 11, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, K.; Chang, J.; Ouyang, J. Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 15897–15904. [Google Scholar] [CrossRef]
- Wang, Q.; Chueh, C.-C.; Eslamian, M.; Jen, A.K.-Y. Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 2016, 8, 32068–32076. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhou, J.; Zhou, L.; Wang, K.; Li, W.; Su, J.; Hao, Y.; Li, Y.; Chang, J. Simultaneously enhanced performance and stability of inverted perovskite solar cells via a rational design of hole transport layer. Org. Electron. 2019, 73, 69–75. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, H.; Ji, T.; Huang, L.; Chen, Y. High conductive PEDOT via post-treatment by halobenzoic for high-efficiency ITO-free and transporting layer-free organic solar cells. Org. Electron. 2016, 33, 316–323. [Google Scholar] [CrossRef]
- Thomas, J.P.; Zhao, L.; McGillivray, D.; Leung, K.T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. J. Mater. Chem. A 2014, 2, 2383. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Y.; Zhang, L.; Tang, F.; Bao, Z.; Lin, J.; Li, Y.; Chen, L.; Ma, C. The solvent treatment effect of the PEDOT:PSS anode interlayer in inverted planar perovskite solar cells. RSC Adv. 2016, 6, 24501–24507. [Google Scholar] [CrossRef]
- Prosa, M.; Tessarolo, M.; Bolognesi, M.; Cramer, T.; Chen, Z.; Facchetti, A.; Fraboni, B.; Seri, M.; Ruani, G.; Muccini, M. Efficient and versatile interconnection layer by solvent treatment of PEDOT:PSS interlayer for air-processed organic tandem solar cells. Adv. Mater. Interfaces 2016, 3, 1600770. [Google Scholar] [CrossRef]
- Adam, G.; Kaltenbrunner, M.; Głowacki, E.D.; Apaydin, D.H.; White, M.S.; Heilbrunner, H.; Tombe, S.; Stadler, P.; Ernecker, B.; Klampfl, C.W.; et al. Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Sol. Energy Mater. Sol. Cells 2016, 157, 318–325. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M.-K. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A 2017, 5, 5701–5708. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 2011, 21, 4927. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chang, J.; Liu, Z.; Sun, X.; Lin, Z.; Chen, D.; Zhang, C.; Zhang, J.; Hao, Y. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step. Nanoscale 2018, 10, 3053–3059. [Google Scholar] [CrossRef]
- Lin, Z.; Chang, J.; Xiao, J.; Zhu, H.; Xu, Q.-H.; Zhang, C.; Ouyang, J.; Hao, Y. Interface studies of the planar heterojunction perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 783–790. [Google Scholar] [CrossRef]
rpm | PEDOT:PSS Thickness | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|---|
2000 | 62–68 nm | 0.90 ± 0.02 | 15.40 ± 0.32 | 0.73 ± 0.03 | 10.1 ± 0.04 |
4000 | 46–49 nm | 0.91 ± 0.02 | 17.16 ± 0.25 | 0.74 ± 0.03 | 11.6 ± 0.5 |
6000 | 34–38 nm | 0.96 ± 0.01 | 18.82 ± 0.23 | 0.75 ± 0.02 | 13.5 ± 0.4 |
7000 | 26–30 nm | 0.98 ± 0.01 | 19.80 ± 0.18 | 0.74 ± 0.02 | 14.4 ± 0.4 |
8000 | 24–28 nm | 0.97 ± 0.01 | 19.64 ± 0.16 | 0.75 ± 0.02 | 14.3 ± 0.3 |
Conditions | A1 | τ1 (ns) | A2 | τ2 (ns) | τave (ns) |
---|---|---|---|---|---|
Pristine | 0.18 | 2.9 | 0.82 | 47.9 | 47.4 |
Solvent treated | 0.23 | 2.1 | 0.77 | 37.3 | 36.7 |
Interlayer | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Rs (Ω cm2) | Rsh (kΩ cm2) |
---|---|---|---|---|---|---|
Pristine | 0.98 ± 0.01 | 19.8 ± 0.2 | 0.76 ± 0.02 | 14.8 ± 0.2 | 4.2 | 1.5 |
DMSO dripping | 0.98 ± 0.01 | 22.6 ± 0.4 | 0.73 ± 0.03 | 16.2 ± 0.3 | 2.1 | 1.1 |
DMF dripping | 0.99 ± 0.01 | 20.9 ± 0.3 | 0.75 ± 0.02 | 15.5 ± 0.2 | 2.7 | 1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lu, G.; Zhang, M.; Gao, Y.; Liu, Y.; Zhou, L.; Lin, Z. High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings 2020, 10, 127. https://doi.org/10.3390/coatings10020127
Wang X, Lu G, Zhang M, Gao Y, Liu Y, Zhou L, Lin Z. High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings. 2020; 10(2):127. https://doi.org/10.3390/coatings10020127
Chicago/Turabian StyleWang, Xuhui, Gang Lu, Min Zhang, Yali Gao, Yanbo Liu, Long Zhou, and Zhenhua Lin. 2020. "High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer" Coatings 10, no. 2: 127. https://doi.org/10.3390/coatings10020127
APA StyleWang, X., Lu, G., Zhang, M., Gao, Y., Liu, Y., Zhou, L., & Lin, Z. (2020). High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings, 10(2), 127. https://doi.org/10.3390/coatings10020127