Atomistic Simulation of Stresses in Growing Silicon Dioxide Films
Abstract
:1. Introduction
2. Method
- Preparation of the fused silica substrate by the melting–quenching procedure from an alpha-quartz crystal [14]. Horizontal dimensions of substrate clusters were equal to 10 and 30 nm, the vertical dimension was equal to 6 nm. Horizontal dimensions of the cluster in the simulation of film deposition were the same as those of the substrate.
- Choice of the deposition angle.
- Simulation of the silicon dioxide film deposition as described above. The number of injection steps was Ns = 250. This ensured the growth of layer with a thickness of approximately 2.5 nm. During the simulation, it was revealed that at the initial stage of the film growth, the absolute value of the stress rapidly increased with increasing film thickness. To take this into account, Ns was reduced to 100 if the film thickness was less than 10 nm.
- Simulation of the deposited cluster in the NVT ensemble and calculation of the pressure tensor components pxx(yy). The initial state for the simulation was the final state after the completion of Ns injection steps. The length of the MD trajectory for averaging of pxx(yy) values was taken equal to 100 ps [15]. The stress tensor components were calculated as shown in Figure 1, where L and H are the vertical dimensions of the simulation box and film thickness, respectively. The multiplier (L/H) in the equation of Figure 1 ensured the correction of pressure to the empty volume at the top part of the box [18].
- Stages 3–4 were repeated until the film thickness achieved a specified value of about 40 nm. This required approximately 4000 injection steps. The initial state for the simulation was the final state of stage 4. The total number of atoms in the final cluster was about one million.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Begou, T.; Lumeau, J. Accurate analysis of mechanical stress in dielectric multilayers. Opt. Lett. 2017, 42, 3217–3220. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Tech. A 2018, 36, 020801. [Google Scholar] [CrossRef] [Green Version]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. 2007, 25, 1317–1335. [Google Scholar] [CrossRef]
- Robbie, K.; Brett, M.J.; Lakhtakia, A. Chiral sculptured thin films. Nature 1996, 384, 616. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, M.; Zhou, N.; Huang, H.; Tsai, C.-T.; Zhou, L. Molecular dynamics simulation study of the microstructure of a-Si:H thin film grown by oblique-angle deposition. Phys. B Condens. Matter 2018, 545, 80–85. [Google Scholar] [CrossRef]
- Joe, M.; Moon, M.-W.; Oh, J.; Lee, K.-H.; Lee, K.-R. Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms. Carbon 2012, 50, 404–410. [Google Scholar] [CrossRef]
- Li, X.; Ke, P.; Lee, K.-R.; Wang, A. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films. Thin Solid Films 2014, 552, 136–140. [Google Scholar] [CrossRef]
- Badorreck, H.; Steinecke, M.; Jensen, L.; Ristau, D.; Jupé, M.; Müller, J.; Tonneau, R.; Moskovkin, P.; Lucas, S.; Pflug, A.; et al. Correlation of structural and optical properties using virtual materials analysis. Opt. Express 2019, 27, 22209–22225. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.; Schubert, M. Anisotropic Bruggeman effective medium approaches for slanted columnar thin films. J. Appl. Phys. 2013, 114, 083510. [Google Scholar] [CrossRef] [Green Version]
- Smy, T.; Vick, D.; Brett, M.J.; Dew, S.K.; Wu, A.T.; Sit, J.C.; Harris, K.D. Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 2000, 18, 2507–2512. [Google Scholar] [CrossRef]
- Grüner, C.; Liedtke, S.; Bauer, J.; Mayr, S.G.; Rauschenbach, B. Morphology of Thin Films Formed by Oblique Physical Vapor Deposition. ACS Appl. Nano Mat. 2018, 1, 1370–1376. [Google Scholar] [CrossRef]
- Backholm, M.; Foss, M.; Nordlund, K. Roughness of glancing angle deposited titanium thin films: An experimental and computational study. Nanotechnology 2012, 23, 385708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoriev, F.V.; Sulimov, A.V.; Kochikov, I.V.; Kondakova, O.A.; Sulimov, V.B.; Tikhonravov, A.V. Supercomputer Modeling of the ion Beam Sputtering Process: Full-Atomistic Level. In Proceedings of the Optical Systems Design 2015: Advances in Optical Thin Films V, Jena, Germany, 7–10 September 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9627, p. 962708. [Google Scholar] [CrossRef]
- Grigoriev, F.V.; Sulimov, A.V.; Katkova, E.V.; Kochikov, I.V.; Kondakova, O.A.; Sulimov, V.B.; Tikhonravov, A.V. Computational Experiments on Atomistic Modeling of Thin Film Deposition. Appl. Opt. 2017, 56, C87–C90. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, F.V.; Sulimov, A.V.; Katkova, E.V.; Kochikov, I.V.; Kondakova, O.A.; Sulimov, V.B.; Tikhonravov, A.V. Annealing of deposited SiO2 thin films: Full-atomistic simulation results. Opt. Mat. Express 2016, 6, 3960–3966. [Google Scholar] [CrossRef]
- Tabata, A.; Matsuno, N.; Suzuoki, Y.; Mizutani, T. Oprtical properties and structure of SiO2 films prepared by ion-beam sputtering. Thin Solid Films 1996, 289, 84–89. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution. Ph.D. Thesis, Lehigh University, Bethlehem, PA, USA, September 2011. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Al, M.; Webb III, E.B. A case study of thin film stress evolution at a dissimilar material interface via molecular dynamics simulations: Gold film growth on a nickel substrate. Nanomater. Nanotechnol. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Gr. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Voevodin, V.V.; Antonov, A.S.; Nikitenko, D.A.; Shvets, P.A.; Sobolev, S.I.; Sidorov, I.Y.; Stefanov, K.S.; Voevodin, V.V.; Zhumatiy, S.A. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 2019, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, F.V.; Sulimov, V.B.; Tikhonravov, A.V. Atomistic simulation of the glancing angle deposition of SiO2 thin films. J. Non Cryst. Solids 2019, 512, 98–102. [Google Scholar] [CrossRef]
- Grigoriev, F.V.; Sulimov, V.B.; Tikhonravov, A.V. Structure of Highly Porous Silicon Dioxide Thin Film: Results of Atomistic Simulation. Coatings 2019, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- .Siad, A.; Besnard, A.; Nouveau, C.; Jacquet, P. Critical angles in DC magnetron glad thin films. Vacuum 2016, 131, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, M.; Nowitzki, T.; Voß, O.; Wilbrandt, S.; Stenzel, O. Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties. Appl. Opt. 2014, 53, A212–A220. [Google Scholar] [CrossRef] [PubMed]
- Tolenis, T.; Grineviciute, L.; Buzelis, R.; Smalakys, L.; Pupka, E.; Melnikas, S.; Selskis, A.; Drazdys, R.; Melninkaitis, A. Sculptured anti-reflection coatings for high power lasers. Opt. Mater. Express 2017, 7, 1249–1258. [Google Scholar] [CrossRef]
- Abadias, G.; Angay, F.; Mareus, R.; Mastail, C. Texture and Stress Evolution in HfN Films Sputter-Deposited at Oblique Angle. Coatings 2019, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Stroud, D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 1975, 12, 3368. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Wang, L.; Liu, D.; Jiang, C.; Cheng, X.; Yang, Y.; Ji, Y. Optical and interfacial layer properties of SiO2 films deposited on different substrate. Appl. Opt. 2014, 53, A83–A87. [Google Scholar] [CrossRef]
- Melninkaitis, A.; Grinevičiūtė, L.; Abromavičius, G.; Mažulė, L.; Smalakys, L.; Pupka, E.; Ščiuka, M.; Buzelis, R.; Kičas, S.; Tolenis, T. Next-generation allsilica coatings for UV applications. In Proceedings of the Laser-Induced Damage in Optical Materials 2017, Boulder, CO, USA, 24–27 September 2017; International Society for Optics and Photonics: Bellingham, WA, USA. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriev, F.V.; Sulimov, V.B.; Tikhonravov, A.V. Atomistic Simulation of Stresses in Growing Silicon Dioxide Films. Coatings 2020, 10, 220. https://doi.org/10.3390/coatings10030220
Grigoriev FV, Sulimov VB, Tikhonravov AV. Atomistic Simulation of Stresses in Growing Silicon Dioxide Films. Coatings. 2020; 10(3):220. https://doi.org/10.3390/coatings10030220
Chicago/Turabian StyleGrigoriev, Fedor V., Vladimir B. Sulimov, and Alexander V. Tikhonravov. 2020. "Atomistic Simulation of Stresses in Growing Silicon Dioxide Films" Coatings 10, no. 3: 220. https://doi.org/10.3390/coatings10030220
APA StyleGrigoriev, F. V., Sulimov, V. B., & Tikhonravov, A. V. (2020). Atomistic Simulation of Stresses in Growing Silicon Dioxide Films. Coatings, 10(3), 220. https://doi.org/10.3390/coatings10030220