Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fundamentals of Thermal Transport in Metals and Dielectrics
3.2. Structure of the Multilayer Coatings Revealed by Rutherford Back-Scattering
3.3. Thermal Conductivity of Multilayer Coatings and Interfaces
3.4. Electronic Structure and Features of Plasmon and Phonon Propagation in Al2O3/Ag Multilayer Coatings
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mosquera, A.A.; Horvat, D.; Rashkovskiy, A.; Kovalev, A.; Miska, P.; Wainstein, D.; Allbella, J.; Endrino, J.L. Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci. Rep. 2013, 3, 1714. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhao, X.; Yin, P.; Gao, F. Size-Dependent Raman Shifts for nanocrystals. Sci. Rep. 2016, 6, 20539. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Liu, Y. Plasmonic metamaterials. Nanotech. Rev. 2014, 3, 177–210. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shalaev, M.I.; Litchinitser, N.M. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat. Commun. 2015, 6, 7201. [Google Scholar] [CrossRef] [Green Version]
- Callebaut, H.; Kumar, S.; Williams, B.S.; Hua, Q.; Reno, J.L. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 2004, 84, 645–647. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cui, T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett. 2013, 102, 211909. [Google Scholar] [CrossRef]
- Tian, Z.; Esfarjani, K.; Shiomi, J.; Henry, A.S.; Chen, G. On the importance of optical phonons to thermal conductivity in nanostructures. Appl. Phys. Lett. 2011, 99, 053122. [Google Scholar] [CrossRef]
- Kargar, F.; Ramirez, S.; Debnath, B.; Malekpour, H.; Lake, R.; Balandin, A.A. Acoustic Phonon Spectrum and Thermal transport in Nanoporous Alumina Arrays. Appl. Phys. Lett. 2015, 107, 171904. [Google Scholar] [CrossRef] [Green Version]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 2012, 42, 179–209. [Google Scholar] [CrossRef]
- Cahill, D.G. Nanoscale thermal transport. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Denis, L.N. Phononics in low-dimensional materials. Mater. Today 2012, 15, 266–275. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2015, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, K. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Oraizi, H.; Abdolali, A. Design and optimization of planar multilayer antireflection metamaterial coatings at KU band under circularly polarized oblique plane wave incidence. Prog. Electromagn. Res. C 2008, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, G.; Li, B. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires. Nano Lett. 2012, 12, 2826–2832. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667–674. [Google Scholar] [CrossRef]
- Chou, Y.-H.; Wu, Y.; Hong, K.-B.; Chou, B.-T.; Shih, J.-H.; Chung, Y.-C.; Chen, P.-Y.; Lin, T.-R.; Lin, C.-C.; Lin, S.-D.; et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 2016, 16, 3179–3186. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Tranchant, L.; Chalopin, Y.; Antoni, T.; Volz, S. Thermal conductivity of nano-layered systems due to surface phonon-polaritons. Journ. Appl. Phys. 2015, 115, 054311. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.Z.A.; Narayanaswamy, A.; Chen, G. Enhancement of in-plane thermal conductivity of thin films via surface phonon-polaritons. Proceedings of IMECE2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November, 2005; pp. 841–846. [Google Scholar]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Osherov, A.; Golan, Y. Size shift of XPS lines observed from PbS nanocrystals. Surf. Interf. Anal. 2010, 42, 850–854. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Wainshtein, D.L.; Rashkovskiy, A.Y.; Golan, Y.; Osherov, A.; Ashkenazy, N. Studying of Quantum-Size Effects Origination in Semiconducting Lead Sulfide Nanocrystals. Protect. Met. Phys. Chem. Surf. 2010, 46, 633–638. [Google Scholar] [CrossRef]
- Kovalev, A.; Wainstein, D.; Rashkovskiy, A.; Golan, Y.; Osherov, A.; Ashkenasi, N. Complex investigation of electronic structure transformations in Lead Sulfide nanoparticles using a set of electron spectroscopy techniques. Vacuum 2012, 86, 638–642. [Google Scholar] [CrossRef]
- Wainstein, D.L.; Kovalev, A.I. Regularities of electronic structure transformations in nanomaterials with decreasing their characteristic size. J. Phys. Conf. Ser. 2017, 857, 012055. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Gago, R.; Soldera, F.; Endrino, J.L.; Fox-Rabinovich, G.S. Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial. J. Nanomat. 2015, 2015, 231–240. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Rashkovskiy, A.Y.; Wainstein, D.L.; Gago, R.; Soldera, F.; Endrino, J.L. Influence of electronic structure, plasmon-phonon and plasmon-polariton excitations on anomalously low heat conductivity in TiAlN/Ag nanoscale multilayer coatings. Curr. Appl. Phys. 2016, 16, 459–468. [Google Scholar] [CrossRef]
- Kovalev, A.I.; Wainstein, D.L.; Rashkovskiy, A.Y.; Gago, R.; Soldera, F.; Endrino, J.L. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity. Appl. Phys. Lett. 2016, 108, 223106. [Google Scholar] [CrossRef] [Green Version]
- Gago, R.; Soldera, F.; Huebner, R.; Lehmann, J.; Munnik, F.; Vázquez, L.; Redondo-Cubero, A.; Endrino, J.L. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films. J. Alloys Compd. 2013, 561, 87–94. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA User’s Guide 6.05; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 2009. [Google Scholar]
- Cahill, D.G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar] [CrossRef]
- Josell, D.; Bonevich, J.E.; Nguyen, T.M.; Johnson, R.N. Heat transfer through nanoscale multilayered thermal barrier coatings at elevated temperatures. Surf. Coat. Tech. 2015, 275, 75. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J.H. Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles, Supplementary Information. Phys. Rev. B 2016, 93, 081206. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, A. Microscale heat conduction in dielectric thin films. ASME HTD 1991, 184, 34–41. [Google Scholar] [CrossRef]
- Jennifer Su, Y.; Wang, H.; Porter, W.D.; De Arellano Lopez, A.R.; Faber, K.T. Thermal conductivity and phase evolution of plasma-sprayed multilayer coatings. J. Mater. Sci. 2001, 36, 3511–3518. [Google Scholar]
- Luo, Z.; Liu, H.; Feng, Y.; Ye, P.; Chen, Y.; Xu, X. In-plane thermal conductivity of ultra-thin Al2O3 films measured by Micro-Raman. In Proceedings of the ASME 2013 Heat Transfer Summer Conference HT2013, Minneapolis, MN, USA, 14–19 July 2013; pp. HT2013–17170. [Google Scholar]
- Stark, I.; Stordeur, M.; Syrowatka, F. Thermal conductivity of thin amorphous alumina films. Thin Solid Films 1993, 226, 185–190. [Google Scholar] [CrossRef]
- Cappella, A.; Battaglia, J.-L.; Schick, V.; Kusiak, A.; Lamperti, A.; Wiemer, C.; Hay, B. High temperature thermal conductivity of amorphous Al2O3 thin films grown by low temperature ALD. Adv. Eng. Mater. 2013, 15, 9999. [Google Scholar] [CrossRef]
- Heino, P.; Ristolainen, E. Thermal conduction at the nanoscale in some metals by MD. Microelectron. J. 2003, 34, 773–777. [Google Scholar] [CrossRef]
- Ryu, S.; Juhng, W.; Kim, Y. Effect of microstructure on thermal conductivity of Cu, Ag thin films. J. Nanosci. Nanotechnol. 2010, 10, 3406–3411. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Nika, D.L.; Fomin, V.M.; Grimm, D.; Schmidt, O.G. Phonon-engineered thermal transport in Si wires with constant and periodically modulated cross-sections: A crossover between nano- and microscale regimes. Appl. Phys. Lett. 2015, 107, 011904. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Shaposhnikov, A.V.; Gritsenko, V.A.; Wong, H.; Han, J.H.; Kim, C.W. Electronic structure of α- Al2O3: Ab initio simulations and comparison with experiment. JETP Lett. 2007, 85, 165–168. [Google Scholar] [CrossRef]
- Liu, D.M.; Tuan, W.H. Microstructure and thermal conduction properties Al2O3-Ag composites. Acta mater. 1996, 44, 813–818. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Abolhassani, M.R.; Hosseini, S.M.; Sebt, S.A. Comparison of electronic and optical properties of the α and κ phases of alumina using density functional theory. Chin. J. Phys. 2009, 47, 862–873. [Google Scholar]
- Yazdanmehr, M.; Asadabadi, S.J.; Nourmohammadi, A.; Ghasemzadeh, M.; Rezvanian, M. Electronic structure and bandgap of γ-Al2O3 compound using mBJ exchange potential. Nanoscale Res. Lett. 2012, 7, 488. [Google Scholar] [CrossRef] [Green Version]
- Bialas, H.; Stolz, H.J. Lattice dynamics of sapphire (corundum). Part I: Phonon dispersion by inelastic neutron scattering. Z. Physik B 1975, 21, 319–324. [Google Scholar] [CrossRef]
- Zhu, K.-R.; Zhang, M.-S.; Chen, Q.; Yin, Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 2005, 340, 220–227. [Google Scholar] [CrossRef]
- Henrique, T.M.C.; Baltar, M.; Drozdowicz-Tomsia, K.; Goldys, E.M. Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. In Plasmonics-Principles and Applications; Kim, Y., Ed.; InTech: Moscow, Ruassia, 2012. [Google Scholar]
- Nelayah, J.; Kociak, M.; Stéphan, O.; Javier García de Abajo, F.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Colliex, C. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 2007, 3, 348–353. [Google Scholar] [CrossRef]
- Singh, K.; Hammond, S.N.A. Current-voltage characteristics and photoresponse of metal-metal devices. Turk. J. Phys. 1998, 22, 315. [Google Scholar]
- Zhang, P. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Sci. Rep. 2015, 5, 9826. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Al2O3 Single Layer Thickness, nm | Ag Single Layer Thickness, nm | Number of Al2O3/Ag Bilayers | Total Thickness, nm |
---|---|---|---|---|
5/40 | 40 | 5 | 4 | 180 |
2/40 | 40 | 2 | 4 | 168 |
4/20 | 20 | 4 | 7 | 168 |
1/8 | 8 | 1 | 7 | 63 |
2/24 | 24 | 2 | 2 | 52 |
5/24 | 24 | 5 | 2 | 58 |
200 | 200 | 0 | 1 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, A.; Wainstein, D.; Vakhrushev, V.; Gago, R.; Endrino, J.L. Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings 2020, 10, 260. https://doi.org/10.3390/coatings10030260
Kovalev A, Wainstein D, Vakhrushev V, Gago R, Endrino JL. Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings. 2020; 10(3):260. https://doi.org/10.3390/coatings10030260
Chicago/Turabian StyleKovalev, Anatoly, Dmitry Wainstein, Vladimir Vakhrushev, Raul Gago, and Jose Luis Endrino. 2020. "Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations" Coatings 10, no. 3: 260. https://doi.org/10.3390/coatings10030260
APA StyleKovalev, A., Wainstein, D., Vakhrushev, V., Gago, R., & Endrino, J. L. (2020). Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations. Coatings, 10(3), 260. https://doi.org/10.3390/coatings10030260