Microstructure Observation and Nanoindentation Size Effect Characterization for Micron-/Nano-Grain TBCs
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Plasma Spray
2.2. Microstructure Observation Tests
2.3. Nanoindentation Tests
3. Experimental Results and Discussion
3.1. Microstructure Characteristics
3.2. Hardness and Modulus Measurements
4. Modeling of Nanoindentation Size Effect for Micron-/Nano-Grain Coating
4.1. Theoretical Model Based on the Trans-Scale Mechanics Theory
4.2. Interpretation to Experimental Hardness Size Effect Based on the Theoretical Model
5. Conclusions
- Scanning electron microscope images reveal that the micron-grain coating had a columnar grain structure with an average grain size of about 1123 nm; the nano-grain coating also had a columnar grain structure formed by recrystallization of the melted particles with an average grain size of about 242 nm, while it possessed the initial nanostructure of the agglomerated powders reserved by the unmelted particles with an average grain size of about 20 nm.
- The hardness and modulus of two kinds of TBCs were measured by using nanoindentation tests. The measurement relation between hardness and indent depth showed a strong size effect. The measured results indicated that the nano-grain coating had larger hardness and modulus than the micron-grain coating, the improved properties of nano-grain coating were associated with retained nanostructure and reduction of porosity, micro-crack, and grain size of the coating.
- The nanoindentation size effect of hardness for the two kinds of TBCs was effectively described by utilizing the trans-scale mechanics theory, the values of material parameters were obtained by comparison of theoretical predictions with experimental measurements and they were within reasonable range.
Author Contributions
Funding
Conflicts of Interest
References
- Strangman, T.E. Thermal barrier coatings for turbine airfoils. Thin Solid Films 1985, 127, 93–106. [Google Scholar] [CrossRef]
- Evans, A.; Mumm, D.; Hutchinson, J.; Meier, G.; Pettit, F. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Koch, C.C. Nanostructured Materials—Processing, Properties, and Applications, 2nd ed.; Noyes Publications, William Andrew Publishing: Norwich, NY, USA, 2002. [Google Scholar]
- Ghasemi, R.; Razavi, R.S.; Mozafarinia, R.; Jamali, H. Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2013, 39, 8805–8813. [Google Scholar] [CrossRef]
- Liang, B.; Ding, C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surf. Coat. Technol. 2005, 197, 185–192. [Google Scholar] [CrossRef]
- Wang, W.; Sha, C.; Sun, D.; Gu, X. Microstructural feature, thermal shock resistance and isothermal oxidation resistance of nanostructured zirconia coating. Mater. Sci. Eng. A 2006, 424, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Liu, K.; Wang, J.W.; Kang, Y.X.; Li, J.R.; Chen, H.Y.; Li, B.Q. Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings. Appl. Surf. Sci. 2016, 363, 101–112. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, L.; Qu, Y.; Fu, Q.; Wang, Y.; Liu, K.; Tang, J.; Li, B.Q.; Han, Z. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J. Alloys Compd. 2015, 644, 873–882. [Google Scholar] [CrossRef]
- Liu, K.; Tang, J.; Bai, Y.; Yang, Q.; Wang, Y.; Kang, Y.; Zhao, L.; Zhang, P.; Han, Z. Particle in-flight behavior and its influence on the microstructure and mechanical property of plasma sprayed La2Ce2O7 thermal barrier coatings. Mater. Sci. Eng. A 2015, 625, 177–185. [Google Scholar] [CrossRef]
- Yin, Z.; Tao, S.; Zhou, X.; Ding, C. Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings. J. Eur. Ceram. Soc. 2008, 28, 1143–1148. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Zhong, X.; Zhao, H.; Wang, L.; Shao, F.; Liu, H.; Tao, S. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying. Surf. Coat. Technol. 2014, 249, 48–55. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Dong, X.; Duan, W.; Mei, X.; Wang, W.; Cui, J.; Lv, J. Influence of columnar grain microstructure on thermal shock resistance of laser re-melted ZrO2-7wt.% Y2O3 coatings and their failure mechanism. Surf. Coat. Technol. 2015, 277, 188–196. [Google Scholar] [CrossRef]
- Wu, J.; Guo, H.; Gao, Y.-Z.; Gong, S.-K. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc. 2011, 31, 1881–1888. [Google Scholar] [CrossRef]
- Nath, S.; Manna, I.; Majumdar, J.D. Nanomechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating. Ceram. Int. 2015, 41, 5247–5256. [Google Scholar] [CrossRef]
- Li, C.; Wang, T.; Liu, X.; Zheng, Z.; Li, Q. Evolution of mechanical properties of thermal barrier coatings subjected to thermal exposure by instrumented indentation testing. Ceram. Int. 2016, 42, 10242–10250. [Google Scholar] [CrossRef]
- Kim, C.H.; Heuer, A.H. A high-temperature displacement-sensitive indenter for studying mechanical properties of thermal barrier coatings. J. Mater. Res. 2004, 19, 351–356. [Google Scholar] [CrossRef]
- Baiamonte, L.; Marra, F.; Pulci, G.; Tirillò, J.; Sarasini, F.; Bartuli, C.; Valente, T. High temperature mechanical characterization of plasma-sprayed zirconia–yttria from conventional and nanostructured powders. Surf. Coat. Technol. 2015, 277, 289–298. [Google Scholar] [CrossRef]
- Jang, B.-K.; Matsubara, H. Influence of porosity on hardness and Young’s modulus of nanoporous EB-PVD TBCs by nanoindentation. Mater. Lett. 2005, 59, 3462–3466. [Google Scholar] [CrossRef]
- Lamuta, C.; Di Girolamo, G.; Pagnotta, L. Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceram. Int. 2015, 41, 8904–8914. [Google Scholar] [CrossRef]
- Lima, R.; Kucuk, A.; Berndt, C. Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surf. Coat. Technol. 2001, 135, 166–172. [Google Scholar] [CrossRef]
- Zeng, Y.; Lee, S.; Gao, L.; Ding, C. Atmospheric plasma sprayed coatings of nanostructured zirconia. J. Eur. Ceram. Soc. 2002, 22, 347–351. [Google Scholar] [CrossRef]
- Thompson, J.; Clyne, T. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001, 49, 1565–1575. [Google Scholar] [CrossRef]
- Malzbender, J.; Steinbrech, R. Mechanical properties of coated materials and multi-layered composites determined using bending methods. Surf. Coat. Technol. 2004, 176, 165–172. [Google Scholar] [CrossRef]
- Hayase, T.; Waki, H. Measurement of Young’s modulus and Poisson’s ratio of thermal barrier coating based on bending of three-layered plate. J. Therm. Spray Technol. 2018, 27, 983–998. [Google Scholar] [CrossRef]
- Li, M.H.; Hu, W.Y.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Apparent indentation size effect of EB-PVD thermal barrier coatings. Rare Metal. Mat. Eng. 2006, 35, 186–188. [Google Scholar] [CrossRef]
- Zotov, N.; Bartsch, M.; Eggeler, G. Thermal barrier coating systems—Analysis of nanoindentation curves. Surf. Coat. Technol. 2009, 203, 2064–2072. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, X.; Wu, X.; Bai, Y. Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A Math. 2001, 44, 74–82. [Google Scholar] [CrossRef]
- Wei, Y.; Hutchinson, J.W. Hardness trends in micron scale indentation. J. Mech. Phys. Solids 2003, 51, 2037–2056. [Google Scholar] [CrossRef]
- Song, J.; Fan, C.; Ma, H.; Wei, Y. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell. Acta Mech. Sin. 2015, 31, 364–372. [Google Scholar] [CrossRef]
- Wu, B.; Liang, L.; Ma, H.; Wei, Y. A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 2012, 57, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Fleck, N.; Muller, G.; Ashby, M.; Hutchinson, J. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 1994, 42, 475–487. [Google Scholar] [CrossRef]
Parameters | NiCrCoAlY Bond Coat | 8YSZ Coating |
---|---|---|
Primary Ar (slpm) | 57 | 30 |
Second H2 (slpm) | 8 | 12 |
Spray distance (mm) | 120 | 120 |
Gun current (A) | 620 | 620 |
Power (kW) | 39 | 42 |
Carrier gas (slpm) | 3.5 | 3.5 |
Powder feed rate (g/min) | 40 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wei, Y.; Liang, L.; Wang, Y.; Song, J.; Long, H.; Liu, Y. Microstructure Observation and Nanoindentation Size Effect Characterization for Micron-/Nano-Grain TBCs. Coatings 2020, 10, 345. https://doi.org/10.3390/coatings10040345
Liu H, Wei Y, Liang L, Wang Y, Song J, Long H, Liu Y. Microstructure Observation and Nanoindentation Size Effect Characterization for Micron-/Nano-Grain TBCs. Coatings. 2020; 10(4):345. https://doi.org/10.3390/coatings10040345
Chicago/Turabian StyleLiu, Haiyan, Yueguang Wei, Lihong Liang, Yingbiao Wang, Jingru Song, Hao Long, and Yanwei Liu. 2020. "Microstructure Observation and Nanoindentation Size Effect Characterization for Micron-/Nano-Grain TBCs" Coatings 10, no. 4: 345. https://doi.org/10.3390/coatings10040345
APA StyleLiu, H., Wei, Y., Liang, L., Wang, Y., Song, J., Long, H., & Liu, Y. (2020). Microstructure Observation and Nanoindentation Size Effect Characterization for Micron-/Nano-Grain TBCs. Coatings, 10(4), 345. https://doi.org/10.3390/coatings10040345