Water-Processed Organic Solar Cells with Open-Circuit Voltages Exceeding 1.3V
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Saunders, B.R. Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014, 4, 43286–43314. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, M.; Sargent, E.H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016. [Google Scholar] [CrossRef]
- Vohra, V. Can polymer solar cells open the path to sustainable and efficient photovoltaic windows fabrication? Chem. Rec. 2019, 19, 1166–1178. [Google Scholar] [CrossRef] [PubMed]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Li, Y.W.; Xu, G.Y.; Cui, C.H.; Li, Y.F. Flexible and Semitransparent Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1701791. [Google Scholar] [CrossRef]
- Sano, T.; Inaba, S.; Vohra, V. Ternary Active Layers for Neutral Color Semitransparent Organic Solar Cells with PCEs over 4%. ACS Appl. Energy Mater. 2019, 2, 2534–2540. [Google Scholar] [CrossRef]
- Andersen, T.R.; Larsen-Olsen, T.T.; Andreasen, B.; Böttiger, A.P.L.; Carlé, J.E.; Helgesen, M.; Bundgaard, E.; Norrman, K.; Andreasen, J.W.; Jørgensen, M.; et al. Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods. ACS Nano 2011, 5, 4188–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Xiong, Y.; Chen, Z.; Zhang, Q.; Fei, Z.; Henry, R.; Heeney, M.; O’Connor, B.T.; You, W.; Ade, H. Sequential Deposition of Organic Films with Eco-Compatible Solvents Improves Performance and Enables Over 12%-Efficiency Nonfullerene Solar Cells. Adv. Mater. 2019, 31, 1808153. [Google Scholar] [CrossRef]
- Fan, Q.; Zhu, Q.; Xu, Z.; Su, W.; Chen, J.; Wu, J.; Guo, X.; Ma, W.; Zhang, M.; Li, Y. Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy 2018, 48, 413–420. [Google Scholar] [CrossRef]
- Lee, J.; Lee, T.H.; Byranvand, M.M.; Choi, K.; Kim, H.I.; Park, S.A.; Kim, J.Y.; Park, T. Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: Molecular weights, photovoltaic performance, and thermal stability. J. Mater. Chem. A 2018, 6, 5538–5543. [Google Scholar] [CrossRef]
- Tsai, P.-T.; Tsai, C.-Y.; Wang, C.-M.; Chang, Y.-F.; Meng, H.-F.; Chen, Z.-K.; Lin, H.-W.; Zan, H.-W.; Horng, S.-F.; Lai, Y.-C.; et al. High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Org. Electron. 2014, 15, 893–903. [Google Scholar] [CrossRef]
- Meng, B.; Liu, J.; Wang, L. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 2020, 11, 1261–1270. [Google Scholar] [CrossRef]
- Zappia, S.; Scavia, G.; Ferretti, A.M.; Giovanella, U.; Vohra, V.; Destri, S. Water-Processable Amphiphilic Low Band Gap Block Copolymer: Fullerene Blend Nanoparticles as Alternative Sustainable Approach for Organic Solar Cells. Adv. Sustain. Syst. 2018, 2, 1700155. [Google Scholar] [CrossRef]
- Vaughan, B.; Williams, E.L.; Holmes, N.P.; Sonar, P.; Dodabalapur, A.; Dastoor, P.C.; Belcher, W.J. Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 2014, 16, 2647–2653. [Google Scholar] [CrossRef]
- Prunet, G.; Parrenin, L.; Pavlopoulou, E.; Pecastaings, G.; Brochon, C.; Hadziioannou, G.; Cloutet, E. Aqueous PCDTBT:PC71BM Photovoltaic Inks Made by Nanoprecipitation. Macromol. RapidCommun. 2018, 39, 1700504. [Google Scholar] [CrossRef] [PubMed]
- Vohra, V.; Mróz, W.; Inaba, S.; Porzio, W.; Giovanella, U.; Galeotti, F. Low-Cost and Green Fabrication of Polymer Electronic Devices by Push-Coating of the Polymer Active Layers. ACS Appl. Mater. Interfaces 2017, 9, 25434–25444. [Google Scholar] [CrossRef]
- Inaba, S.; Arai, R.; Mihai, G.; Lazar, O.; Moise, C.; Enachescu, M.; Takeoka, Y.; Vohra, V. Eco-Friendly Push-Coated Polymer Solar Cells with No Active Material Wastes Yield Power Conversion Efficiencies over 5.5%. ACS Appl. Mater. Interfaces 2019, 11, 10785–10793. [Google Scholar] [CrossRef]
- Lee, W.; Seo, J.H.; Woo, H.Y. Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices. Polymer 2013, 54, 5104–5121. [Google Scholar] [CrossRef] [Green Version]
- Schmatz, B.; Yuan, Z.; Lang, A.W.; Hernandez, J.L.; Reichmanis, E.; Reynolds, J.R. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains. ACS Cent. Sci. 2017, 3, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597–3602. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, Y.; Saito, F.; Rikukawa, M. Synthesis of optically active regioregularpolythiophenes and their self-organization at the air-water interface. Langmuir 2013, 29, 8718–8727. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A.J.; Bazan, G.C. Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. J. Am. Chem. Soc. 2011, 133, 8416–8419. [Google Scholar] [CrossRef]
- Yao, K.; Chen, L.; Chen, Y.; Li, F.; Wang, P. Influence of water-soluble polythiophene as an interfacial layer on theP3HT/PCBM bulk heterojunction organic photovoltaics. J. Mater. Chem. 2011, 21, 13780–13784. [Google Scholar] [CrossRef]
- Lanzi, M.; Salatelli, E.; Giorgini, L.; Mucci, A.; Pierini, F.; Di-Nicola, F.P. Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. Eur. Polym. J. 2017, 97, 378–388. [Google Scholar] [CrossRef]
- Takeoka, Y.; Umezawa, K.; Oshima, T.; Yoshida, M.; Yoshizawa-Fujita, M.; Rikukawa, M. Synthesis and properties of hydrophilic-hydrophobic diblock copolymer ionomers based on poly(p-phenylene)s. Polym. Chem. 2014, 5, 4132–4140. [Google Scholar] [CrossRef]
- Sato, T.; Yoshizawa-Fujita, M.; Takeoka, Y.; Rikukawa, M. Formation of polyelectrolyte complexes from cationic polyfluorenes and ssDNA. J. Anal. Bioanal. Tech. 2017, 8, 388. [Google Scholar] [CrossRef]
- Kettle, J.; Waters, H.; Horie, M.; Chang, S.-W. Effect of hole transporting layers on the performance of PCPDTBT:PCBM organic solar cells. J. Phys. D Appl. Phys. 2012, 45, 125102. [Google Scholar] [CrossRef]
- Fan, X.; Fang, G.; Qin, P.; Sun, N.; Liu, N.; Zheng, Q.; Cheng, F.; Yuan, L.; Zhao, X. Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells. J. Phys. D Appl. Phys. 2011, 44, 045101. [Google Scholar] [CrossRef]
- Raïssi, M.; Vignau, L.; Cloutet, E.; Ratier, B. Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Org. Electron. 2015, 21, 86–91. [Google Scholar] [CrossRef]
- Sarath Kumar, S.R.; Kurra, N.; Alshareef, H.N. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films. J. Mater. Chem. C 2016, 4, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Meresa, A.A.; Kim, F.S. Selective Ammonia-Sensing Platforms Based on a Solution-Processed Film of Poly(3-Hexylthiophene) and p-Doping Tris(Pentafluorophenyl)Borane. Polymers 2020, 12, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, I.H.; Hong, C.T.; Lee, U.-H.; Kang, Y.H.; Jang, K.-S.; Cho, S.Y. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering. Sci. Rep. 2017, 7, 44704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazinic, V.; Ericsson, L.K.E.; Muntean, S.A.; Moons, E. Photo-degradation in air of spin-coated PC60BM and PC70BM films. Synth. Met. 2018, 241, 26–30. [Google Scholar] [CrossRef]
- Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C.J. Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule 2019, 3, 215–226. [Google Scholar] [CrossRef] [Green Version]
OSCs | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
OSC-Ref | 0.041 | 0.80 | 45.4 | 0.015 ± 0.004 |
OSC-MoO3 | 0.093 | 0.71 | 60.1 | 0.040 ± 0.007 |
OSC-PEDOT:PSS (2nd) | 0.546 | 1.31 | 33.4 | 0.238 ± 0.012 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vohra, V.; Shimizu, S.; Takeoka, Y. Water-Processed Organic Solar Cells with Open-Circuit Voltages Exceeding 1.3V. Coatings 2020, 10, 421. https://doi.org/10.3390/coatings10040421
Vohra V, Shimizu S, Takeoka Y. Water-Processed Organic Solar Cells with Open-Circuit Voltages Exceeding 1.3V. Coatings. 2020; 10(4):421. https://doi.org/10.3390/coatings10040421
Chicago/Turabian StyleVohra, Varun, Shunsuke Shimizu, and Yuko Takeoka. 2020. "Water-Processed Organic Solar Cells with Open-Circuit Voltages Exceeding 1.3V" Coatings 10, no. 4: 421. https://doi.org/10.3390/coatings10040421
APA StyleVohra, V., Shimizu, S., & Takeoka, Y. (2020). Water-Processed Organic Solar Cells with Open-Circuit Voltages Exceeding 1.3V. Coatings, 10(4), 421. https://doi.org/10.3390/coatings10040421