Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms
Abstract
:1. Introduction
2. Synthesis of LDH on Aluminum and Aluminum Alloys
2.1. Coprecipitated Synthesis
2.2. In Situ Growth Method
3. Corrosion Resistance of LDH Films
3.1. Corrosion Resistance of In-Situ Grown LDHs
3.2. Corrosion Resistance Co-Precipitated LDHs in Organic and Hybrid Matrices
3.3. Kinetics and Controlled Release of Interlayer LDHs Corrosion Inhibitors
3.4. Testing and Evaluation of LDH Coatings or Co-Precipitated Particles
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Davis, J.R. (Ed.) Corrosion of Aluminum and Aluminum Alloys; ASM International: Geauga, OH, USA, 1999. [Google Scholar]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2016, 12, 4646–4663. [Google Scholar] [CrossRef]
- Liang, W.J.; Rometsch, P.A.; Cao, L.F.; Birbilis, N. General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu. Corros. Sci. 2013, 76, 119–128. [Google Scholar] [CrossRef]
- Larsen, M.H.; Walmsley, J.C.; Lunder, O.; Mathiesen, R.H.; Nisancioglu, K. Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J. Electrochem. Soc. 2008, 155, 550–556. [Google Scholar] [CrossRef]
- Ye, H. An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Chen, C.L.; West, G.; Thomson, R.C. Characterisation of intermetallic phases in multicomponent Al-Si casting alloys for engineering applications. Mat. Sci. Forum 2006, 521, 359–364. [Google Scholar] [CrossRef]
- Donatus, U.; Thompson, G.E.; Omotoyinbo, J.A.; Alaneme, K.K.; Aribo, S.; Agbabiaka, O.G. Corrosion pathways in aluminium alloys. Trans. Nonferrous Met. Soc. China 2017, 27, 55–62. [Google Scholar] [CrossRef]
- Tupaj, M.; Orłowicz, A.W.; Mróz, M.; Trytek, A.; Markowska, O. The Effect of Cooling Rate on Properties of Intermetallic Phase in a Complex Al-Si Alloy. Arch. Foundry Eng. 2016, 16, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Yasakau, K.A.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 2007, 52, 7651–7659. [Google Scholar] [CrossRef]
- Linder, J. The influence of surrounding environment on the fatigue properties for a high pressure die cast AlSi9Cu3 alloy. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 759–765. [Google Scholar] [CrossRef]
- Ferreira, M.G.S.; Zheludkevich, M.L.; Tedim, J.; Yasakau, K.A. Self-Healing Nanocoatings for Corrosion Control; Woodhead Publishing Limited: Sawston, UK, 2012. [Google Scholar]
- Makhlouf, A.S.H. Current and Advanced Coating Technologies for Industrial Applications; Woodhead Publishing Limited: Sawston, UK, 2011. [Google Scholar]
- Arenas, M.A.; Conde, A.; de Damborenea, J.J. Effect of acid traces on hydrothermal sealing of anodising layers on 2024 aluminium alloy. Electrochim. Acta 2010, 55, 8704–8708. [Google Scholar] [CrossRef]
- Venugopal, A.; Panda, R.; Manwatkar, S.; Sreekumar, K.; Krishna, L.R.; Sundararajan, G. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5 NaCl solution. Trans. Nonferrous Met. Soc. China 2012, 22, 700–710. [Google Scholar] [CrossRef]
- Dalmoro, V.; Santos, J.H.Z.D.; Armelin, E.; Alemán, C.; Azambuja, D.S. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy. Appl. Surf. Sci. 2013, 273, 758–768. [Google Scholar] [CrossRef]
- Voevodin, N.N.; Kurdziel, J.W.; Mantz, R. Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol-gel. Surf. Coat. Technol. 2006, 201, 1080–1084. [Google Scholar] [CrossRef]
- Johansen, H.D.; Brett, C.M.A.; Motheo, A.J. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings. Corros. Sci. 2012, 63, 342–350. [Google Scholar] [CrossRef]
- Shi, H.; Han, E.H.; Liu, F.; Kallip, S. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating. Appl. Surf. Sci. 2013, 280, 325–331. [Google Scholar] [CrossRef]
- Schäfer, H.; Stock, H.R. Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corros. Sci. 2005, 47, 953–964. [Google Scholar] [CrossRef]
- Diesselberg, M.; Stock, H.R.; Mayr, P. Corrosion protection of magnetron sputtered TiN coatings deposited on high strength aluminium alloys. Surf. Coat. Technol. 2004, 178, 399–403. [Google Scholar] [CrossRef]
- Lutz, A.; van den Berg, O.; van Damme, J.; Verheyen, K.; Bauters, E.; de Graeve, I.; Prez, F.E.D.; Terryn, H. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl. Mater. Interfaces 2015, 7, 175–183. [Google Scholar] [CrossRef]
- Williams, G.R.; O’Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074. [Google Scholar] [CrossRef]
- Qu, J.E.; Chen, G.; Wang, H.R.; Nie, D.J. Effect of water content on corrosion inhibition behavior of self-assembled TDPA on aluminum alloy surface. Trans. Nonferrous Met. Soc. China 2013, 23, 3137–3144. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, X.; Liu, W.; Zhao, Y. Preparation and characterization of Ce-silane-ZrO2 composite coatings on 1060 aluminum. Trans. Nonferrous Met. Soc. China 2014, 24, 1474–1480. [Google Scholar] [CrossRef]
- Newman, S.P.; Jones, W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem. 1998, 22, 105–115. [Google Scholar] [CrossRef]
- Oh, J.M.; Biswick, T.T.; Choy, J.H. Layered nanomaterials for green materials. J. Mater. Chem. 2009, 19, 2553–2563. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural aspects of layered double hydroxides. Struct. Bond. 2005, 119, 1–87. [Google Scholar]
- Yu, J.; Liu, J.; Clearfield, A.; Sims, J.E.; Speiegle, M.T.; Suib, S.L.; Sun, L. Synthesis of layered double hydroxide single-layer nanosheets in formamide. Inorg. Chem. 2016, 55, 12036–12041. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Tian, D.Y.; Li, S.P.; Li, X.D.; Lu, T.H. MTX/LDHs hybrids synthesized from reverse microemulsions: Particle control and bioassay study. Int. J. Pharm. 2014, 473, 414–425. [Google Scholar] [CrossRef]
- Chitrakar, R.; Makita, Y.; Sonoda, A.; Hirotsu, T. Synthesis of a novel layered double hydroxides [MgAl4(OH)12](Cl)2·2.4H2O and its anion-exchange properties. J. Hazard. Mater. 2011, 185, 1435–1439. [Google Scholar] [CrossRef]
- Cai, X.; Shen, X.; Ma, L.; Ji, Z.; Xu, C.; Yuan, A. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 2015, 268, 251–259. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Asghar, H.; Iqbal, M.A.; Fedel, M. Sorption of As(V) from aqueous solution using in situ growth MgAl–NO3 layered double hydroxide thin film developed on AA6082. SN Appl. Sci. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Laipan, M.; Fu, H.; Zhu, R.; Sun, L.; Steel, R.M.; Ye, S.; Zhu, J.; He, H. Calcined Mg/Al-LDH for acidic wastewater treatment: Simultaneous neutralization and contaminant removal. Appl. Clay Sci. 2018, 153, 46–53. [Google Scholar] [CrossRef]
- Laipan, M.; Fu, H.; Zhu, R.; Sun, L.; Zhu, J.; He, H. Converting Spent Cu/Fe Layered Double Hydroxide into Cr(VI) Reductant and Porous Carbon Material. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, W.; Chen, X.; Ge, F.; Zhu, R.; Sun, L. Self-assembled ZnAl-LDH/PMo12 nano-hybrids as effective catalysts on the degradation of methyl orange under room temperature and ambient pressure. Appl. Catal. A 2018, 550, 206–213. [Google Scholar] [CrossRef]
- Yang, J.H.; Han, Y.S.; Park, M.; Park, T.; Hwang, S.J.; Choy, J.H. New inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate. Chem. Mater. 2007, 19, 2679–2685. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, F.; Peng, Q.; Xu, S.; Lei, X.; Evans, D.G.; Duan, X. Layered double hydroxide/eggshell membrane: An inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal. Chem. Eng. J. 2011, 166, 81–87. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol. 2018, 34, 1455–1466. [Google Scholar] [CrossRef]
- Okamoto, K.; Iyi, N.; Sasaki, T. Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents. Appl. Clay Sci. 2007, 37, 23–31. [Google Scholar] [CrossRef]
- Iqbal, M.; Fedel, M. Effect of Synthesis Conditions on the Controlled Growth of MgAl–LDH Corrosion Resistance Film: Structure and Corrosion Resistance Properties. Coatings 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clay Clay Miner. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Bravo-Suárez, J.J.; Páez-Mozo, E.A.; Oyama, S.T. Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quim. Nova 2004, 27, 601–604. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Jin, W. Recent Advances in the Synthesis of Layered, Double-Hydroxide-Based Materials and Their Applications in Hydrogen and Oxygen Evolution. Energy Technol. 2016, 4, 354–368. [Google Scholar] [CrossRef]
- Chubar, N.; Gilmour, R.; Gerda, V.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.; Zaitsev, V. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability. Adv. Colloid Interface Sci. 2017, 245, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ohare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef] [PubMed]
- Nalawade, P.; Aware, B.; Kadam, V.J.; Hirlekar, R.S. Layered double hydroxides: A review. J. Sci. Ind. Res. 2009, 68, 267–272. [Google Scholar]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Salak, A.N.; Tedim, J.; Kuznetsova, A.I.; Ribeiro, J.L.; Vieira, L.G.; Zheludkevich, M.L.; Ferreira, M.G. Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al layered double hydroxides: Vanadate vs nitrate. Chem. Phys. 2012, 397, 102–108. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Guan, H.; Mahajanam, S.; Wong, F. Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog. Org. Coat. 2003, 4, 174–182. [Google Scholar] [CrossRef]
- Mahajanam, S.P.V.; Buchheit, R.G. Characterization of inhibitor release from Zn-Al-[V10 O28]6- hydrotalcite pigments and corrosion protection from hydrotalcite-pigmented epoxy coatings. Corrosion 2008, 64, 230–240. [Google Scholar] [CrossRef]
- Williams, G.; McMurray, H.N. Anion-exchange inhibition of filiform corrosion on organic coated AA2024-T3 aluminum alloy by hydrotalcite-like pigments. Electrochem. Solid-State Lett. 2003, 6, 9–11. [Google Scholar] [CrossRef]
- Williams, G.; McMurray, H.N. Inhibition of filiform corrosion on polymer coated AA2024-T3 by hydrotalcite-like pigments incorporating organic anions. Electrochem. Solid-State Lett. 2004, 7, 13–15. [Google Scholar] [CrossRef]
- Michailidou, E.; McMurray, H.N.; Williams, G. Inhibition of filiform corrosion on organic-coated magnesium-containing galvanized steel by smart-release ion exchange pigments. ECS Trans. 2017, 80, 585–591. [Google Scholar] [CrossRef]
- Poznyak, S.K.; Tedim, J.; Rodrigues, L.M.; Salak, A.N.; Zheludkevich, M.L.; Dick, L.F.; Ferreira, M.G. Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Appl. Mater. Interfaces 2009, 1, 2353–2362. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Poznyak, S.K.; Rodrigues, L.M.; Raps, D.; Hack, T.; Dick, L.F.; Nunes, T.; Ferreira, M.G.S. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 2010, 52, 602–611. [Google Scholar] [CrossRef]
- Stimpfling, T.; Leroux, F.; Hintze-Bruening, H. Organo-modified layered double hydroxide in coating formulation to protect AA2024 from corrosion. Colloids Surf., A 2014, 458, 147–154. [Google Scholar] [CrossRef]
- Stimpfling, T.; Leroux, F.; Hintze-Bruening, H. Unraveling EDTA corrosion inhibition when interleaved into Layered Double Hydroxide epoxy filler system coated onto aluminum AA 2024. Appl. Clay Sci. 2013, 84, 32–41. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yu, M.; Li, S.; Xue, B.; Yin, X. Influence of embedded ZnAlCe-NO3- layered double hydroxides on the anticorrosion properties of sol-gel coatings for aluminum alloy. Prog. Org. Coat. 2015, 81, 93–100. [Google Scholar] [CrossRef]
- Galvão, T.L.; Neves, C.S.; Caetano, A.P.; Maia, F.; Mata, D.; Malheiro, E.; Ferreira, M.J.; Bastos, A.C.; Salak, A.N.; Gomes, J.R.; et al. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool. J. Colloid Interf. Sci. 2016, 468, 86–94. [Google Scholar] [CrossRef]
- Buchheit, R.G., Jr.; Stoner, G.E. Method for increasing the corrosion resistance of aluminum and aluminum alloys. US Patent number RE35576, 29 July 1997. [Google Scholar]
- Zhang, Y.; Li, Y.; Ren, Y.; Wang, H.; Chen, F. Double-doped LDH films on aluminum alloys for active protection. Mater. Lett. 2017, 192, 33–35. [Google Scholar] [CrossRef]
- Zhou, B.; Wei, X.; Wang, Y.; Huang, Q.; Hong, B.; Wei, Y. Effect of lanthanum addition on microstructures and corrosion behavior of ZnAl-LDHs film of 6061 aluminum alloys. Surf. Coat. Technol. 2019, 379, 125056. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Fedel, M. The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl-LDH based conversion film on AA6082. Surf. Coat. Technol. 2018, 352, 166–174. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Sun, L.; Fedel, M. Synthesis of novel cone—shaped CaAl - LDH directly on aluminum alloy by a facile urea hydrolysis method. SN Appl. Sci. 2019, 1, 1415. [Google Scholar] [CrossRef] [Green Version]
- Serdechnova, M.; Mohedano, M.; Bouali, A.C.; Höche, D.; Kuznetsov, B.; Karpushenkov, S.; Blawert, C.; Zheludkevich, M.L. Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growth. Coatings 2017, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Bouali, A.C.; Straumal, E.A.; Serdechnova, M.; Wieland, D.C.; Starykevich, M.; Blawert, C.; Hammel, J.U.; Lermontov, S.A.; Ferreira, M.G.; Zheludkevich, M.L. Applied Surface Science Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024. Appl. Surf. Sci. 2019, 494, 829–840. [Google Scholar] [CrossRef]
- Mikhailau, A.; Maltanava, H.; Poznyak, S.K.; Salak, A.N.; Zheludkevich, M.L.; Yasakau, K.A.; Ferreira, M.G.S. One-step synthesis and growth mechanism of nitrate intercalated ZnAl LDH conversion coatings on zinc. Chem. Commun. 2019, 55, 6878–6881. [Google Scholar] [CrossRef] [PubMed]
- Tedim, J.; Zheludkevich, M.L.; Salak, A.N.; Lisenkov, A.; Ferreira, M.G.S. Nanostructured LDH-container layer with active protection functionality. J. Mater. Chem. 2011, 21, 15464–15470. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, L.; Chen, H.; Xu, S.; Evans, D.G.; Duan, X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew. Chemie Int. Ed. 2008, 47, 2466–2469. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, K.; He, H.; Sun, W.; Zong, Q.; Liu, G. Enhanced corrosion resistance of MgAl hydrotalcite conversion coating on aluminum by chemical conversion treatment. Surf. Coat. Technol. 2013, 235, 484–488. [Google Scholar] [CrossRef]
- Kaseem, M.; Ko, Y.G. Benzoate intercalated Mg-Al-layered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. J. Alloys Compd. 2019, 787, 772–778. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, Y.; Yu, M.; Liu, J. Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy. J. Alloys Compd. 2015, 630, 29–36. [Google Scholar] [CrossRef]
- Serdechnova, M.; Mohedano, M.; Kuznetsov, B.; Mendis, C.L.; Starykevich, M.; Karpushenkov, S.; Tedim, J.; Ferreira, M.G.; Blawert, C.; Zheludkevich, M.L. PEO coatings with active protection based on in-situ formed LDH-nanocontainers. J. Electrochem. Soc. 2017, 164, C36–C45. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, B.; Serdechnova, M.; Tedim, J.; Starykevich, M.; Kallip, S.; Oliveira, M.P.; Hack, T.; Nixon, S.; Ferreira, M.G.; Zheludkevich, M.L. Sealing of tartaric sulfuric (TSA) anodized AA2024 with nanostructured LDH layers. RSC Adv. 2016, 6, 13942–13952. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Fedel, M. Effect of operating parameters on the structural growth of ZnAl layered double hydroxide on AA6082 and corresponding corrosion resistance properties. J. Coat. Technol. Res. 2019, 16, 1423–1433. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Sun, L.; LaChance, A.M.; Ding, H.; Fedel, M. In situ growth of a CaAl-NO 3—layered double hydroxide film directly on an aluminum alloy for corrosion resistance. Dalton Trans. 2020, 49, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zheng, D.; Li, X.; Lin, J.; Wang, C.; Dong, S.; Lin, C. Enhanced Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films with Long-Term Stability on Al Substrate. ACS Appl. Mater. Interfaces 2018, 10, 15150–15162. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.A.; Sun, M.A.L.; Asghar, H.; Fedel, M. Chlorides Entrapment Capability of Various In-Situ Grown NiAl-LDHs: Structural and Corrosion Resistance Properties. Coatings 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, T.; Cai, R.; Li, Y.; Yang, W.; Caro, J. One-pot synthesis of NiAl-CO3 LDH anti-corrosion coatings from CO2-saturated precursors. RSC Adv. 2015, 5, 29552–29557. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, C.L.; Song, L.; Zeng, R.C.; Liu, Z.G.; Cui, H.Z. Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 3498–3504. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Lu, Z. Hydrophobic Mg-Al layered double hydroxide film on aluminum: Fabrication and microbiologically influenced corrosion resistance properties. Colloids Surf. A 2015, 474, 44–51. [Google Scholar] [CrossRef]
- Guo, X.; Xu, S.; Zhao, L.; Lu, W.; Zhang, F.; Evans, D.G.; Duan, X. One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties. Langmuir 2009, 25, 9894–9897. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.L.; Song, L.; Zeng, R.C.; Cui, L.Y.; Cui, H.Z. Corrosion resistance of superhydrophobic mg-al layered double hydroxide coatings on aluminum alloys. Acta Metall. Sin. English Lett. 2015, 28, 1373–1381. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Yuan, S.; Pan, X.; Zhang, C.; Du, S.; Liu, Y. Synthesis and Enhanced Corrosion Protection Performance of Reduced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method. ACS Appl. Mater. Interfaces 2017, 9, 18263–18275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, P.; Wang, J.; Li, Y.; Chen, F.; Wei, K.; Zuo, Y. LDHs/graphene film on aluminum alloys for active protection. Appl. Surf. Sci. 2018, 433, 927–933. [Google Scholar] [CrossRef]
- Álvarez, D.; Collazo, A.; Hernández, M.; Nóvoa, X.R.; Pérez, C. Characterization of hybrid sol-gel coatings doped with hydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys. Prog. Org. Coat. 2010, 68, 91–99. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Yang, J.; Miao, F. In situ growth of superhydrophobic and icephobic films with micro/nanoscale hierarchical structures on the aluminum substrate. J. Colloid Interface Sci. 2013, 410, 165–171. [Google Scholar] [CrossRef]
- Mohedano, M.; Serdechnova, M.; Starykevich, M.; Karpushenkov, S.; Bouali, A.C. Active protective PEO coatings on AA2024: Role of voltage on in-situ LDH growth. Mater. Des. 2017, 120, 36–46. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, Y.; Yu, M.; Liu, J. Fabrication of superhydrophobic layered double hydroxides films with different metal cations on anodized aluminum 2198 alloy. Mater. Lett. 2015, 142, 137–140. [Google Scholar] [CrossRef]
- Subasri, R.; Raju, K.S.; Reddy, D.S.; Jyothirmayi, A.; Ijeri, V.S.; Prakash, O.; Gaydos, S.P. Environmentally friendly Zn–Al layered double hydroxide (LDH)-based sol–gel corrosion protection coatings on AA 2024-T3. J. Coat. Technol. Res. 2019, 16, 1447–1463. [Google Scholar] [CrossRef]
- Lin, K.; Luo, X.; Pan, X.; Zhang, C.; Liu, Y. Enhanced corrosion resistance of LiAl-layered double hydroxide (LDH) coating modified with a Schiff base salt on aluminum alloy by one step in-situ synthesis at low temperature. Appl. Surf. Sci. 2019, 463, 1085–1096. [Google Scholar] [CrossRef]
- Liang, Z.; Ma, Y.; Li, K.; Liao, Y.; Yang, B.; Liu, L.; Zhu, P. Formation of layered double hydroxides fi lm on AA2099-T83 Al-Cu-Li alloy and its e ff ect on corrosion resistance. Surf. Coat. Technol. 2019, 378, 124967. [Google Scholar] [CrossRef]
- Radha, A.V.; Kamath, P.V.; Shivakumara, C. Mechanism of the anion exchange reactions of the layered double hydroxides ( LDHs ) of Ca and Mg with Al. Solid State Sci. 2005, 7, 1180–1187. [Google Scholar] [CrossRef]
- Allada, R.; Navrotsky, A. Thermochemistry and Aqueous Solubilities of Hydrotalcite-Like Solids. Science 2002, 296, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Tedim, J.; Kuznetsova, A.; Salak, A.N.; Montemor, F.; Snihirova, D.; Pilz, M.; Zheludkevich, M.L.; Ferreira, M.G. Zn-Al layered double hydroxides as chloride nanotraps in active protective coatings. Corros. Sci. 2012, 55, 1–4. [Google Scholar] [CrossRef]
- Tedim, J.; Zheludkevich, M.L.; Bastos, A.C.; Salak, A.N.; Lisenkov, A.D.; Ferreira, M.G.S. Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection. Electrochim. Acta 2014, 117, 164–171. [Google Scholar] [CrossRef]
- Neves, C.S.; Bastos, A.C.; Salak, A.N.; Starykevich, M.; Rocha, D.; Zheludkevich, M.L.; Cunha, A.; Almeida, A.; Tedim, J.; Ferreira, M.G. Layered Double Hydroxide Clusters as Precursors of Novel Multifunctional Layers: A Bottom-Up Approach. Coatings 2019, 9, 328. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, F.; Fu, S.; Duan, X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv. Mater. 2006, 18, 3089–3093. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Z. Insitu growth of durable superhydrophobic Mg e Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance. J. Alloys Compd. 2018, 767, 382–391. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Fedel, M. Ordering and disordering of in situ grown MgAl-layered double hydroxide and its effect on the structural and corrosion resistance properties. Int. J. Miner. Metall. Mater. 2019, 26, 1570–1577. [Google Scholar] [CrossRef]
- Kovanda, F.; Masatova, P.; Novotna, P.; Jratova, K. The formation of layered double hydroxides on alumina surface. Clays Clay Miner. 2009, 57, 425–432. [Google Scholar] [CrossRef]
- Chen, F.; Yu, P.; Zhang, Y. Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy. J. Alloys Compd. 2017, 711, 342–348. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Zhao, X.; Chen, C.; Cao, J. Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides. PLoS ONE 2012, 7, e37781. [Google Scholar] [CrossRef]
- Van de Sanden, M.C.; Severens, R.J.; Bastiaanssen, J.; Schram, D.C. High-quality a-Si:H growth at high rate using an expanding thermal plasma. Surf. Coat. Technol. 1997, 97, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Lyon, S.B.; Bingham, R.; Mills, D.J. Progress in Organic Coatings Advances in corrosion protection by organic coatings: What we know and what we would like to know. Prog. Org. Coat. 2017, 102, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Imanieh, I.; Afshar, A. Corrosion protection of aluminum by smart coatings containing layered double hydroxide (LDH) nanocontainers. J. Mater. Res. Technol. 2019, 8, 3004–3023. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, Y.; Yu, M.; Yin, X.; Li, S. Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2017, 32, 1199–1204. [Google Scholar] [CrossRef]
- ISO. ISO. 8407: 2009 (E). Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens; International Standards Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Bendinelli, E.V.; Aoki, I.V.; Barcia, O.; Margarit-mattos, I.C.P. Kinetic aspects of Mg-Al layered double hydroxides influencing smart corrosion protective behavior. Mater. Chem. Phys. 2019, 238, 121883. [Google Scholar] [CrossRef]
- Rojas, R.; Jimenez-kairuz, A.F.; Manzo, R.H.; Giacomelli, C.E. Colloids and Surfaces A: Physicochemical and Engineering Aspects Release kinetics from LDH-drug hybrids: Effect of layers stacking and drug solubility and polarity. Colloids Surf. A 2014, 463, 37–43. [Google Scholar] [CrossRef]
- Gao, X.; Lei, L.; Hare, D.O.; Xie, J.; Gao, P.; Chang, T. Journal of Solid State Chemistry Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide. J. Solid State Chem. 2013, 203, 174–180. [Google Scholar] [CrossRef]
- Khodam, F.; Rezvani, Z.; Amani-ghadim, A.R. Journal of Industrial and Engineering Chemistry Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. J. Ind. Eng. Chem. 2014, 21, 1286–1294. [Google Scholar] [CrossRef]
- Szauer, T. Impedance measurements for the evaluation of protective nonmetallic coatings. Prog. Org. Coat. 1982, 10, 171–183. [Google Scholar] [CrossRef]
- Mansfeld, F.; Kendig, M.W.; Tsai, S. Evaluation of corrosion behavior of coated metals with ac impedance measurements. Corrosion 1982, 38, 478–485. [Google Scholar] [CrossRef]
- MacDonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- Bacon, R.C.; Smith, J.J.; Rugg, F.M. Electrolytic Resistance in Evaluating Protective Merit of Coatings on Metals. Ind. Eng. Chem. 1948, 40, 161–167. [Google Scholar] [CrossRef]
- Murray, J.N. Electrochemical test methods for evaluating organic coatings on metals: An update. Part I. Introduction and generalities regarding electrochemical testing of organic coatings. Prog. Org. Coat. 1997, 30, 225–233. [Google Scholar] [CrossRef]
- Amirudin, A.; Thierry, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Hill, C.; Hooper, A. Company Analysis of hydrogen-doped lithium nitride admittance data. Solid State Ionics 1982, 6, 65–77. [Google Scholar] [CrossRef]
- Boukamp, B.A. A non linear leasts squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 1985, 20, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.J. Corrosion Engineering-Practices vs Principles. In Engineering Conference 1984: Conference Papers; Institution of Engineers: Brisbane, Australia, 1984; p. 376. [Google Scholar]
- Jorcin, J.B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Walter, G.W. The application of impedance spectroscopy to study the uptake of sodium chloride solution in painted metals. Corros. Sci. 1991, 32, 1041–1058. [Google Scholar] [CrossRef]
- Fréchette, E.; Compécre, C.; Ghali, E. Evaluation of the corrosion resistance of painted steels by impedance measurements. Corros. Sci. 1992, 33, 1067–1081. [Google Scholar] [CrossRef]
- Bierwagen, G.; Allahar, K.; Hinderliter, B.; Simões, A.M.P.; Tallman, D.; Croll, S. Ionic liquid enhanced electrochemical characterization of organic coatings. Prog. Org. Coat. 2008, 63, 250–259. [Google Scholar] [CrossRef]
- Amand, S.; Musiani, M.; Orazem, M.E.; Pébère, N.; Tribollet, B.; Vivier, V. Electrochimica Acta Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings. Electrochim. Acta 2013, 87, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Roberge, P.R. Corrosion Engineering: Principles and Practice; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Montemor, M.F.; Snihirova, D.V.; Taryba, M.G.; Lamaka, S.V.; Kartsonakis, I.A.; Balaskas, A.C.; Kordas, G.C.; Tedim, J.; Kuznetsova, A.; Zheludkevich, M.L. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim. Acta 2012, 60, 31–40. [Google Scholar] [CrossRef]
- Tedim, J.; Bastos, A.C.; Kallip, S.; Zheludkevich, M.L.; Ferreira, M.G.S. Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results. Electrochim. Acta 2016, 210, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, M.A.; Tedim, J.; Zheludkevich, M.; van der Zwaag, S.; Garcia, S.J. Synergetic active corrosion protection of AA2024-T3 by 2D- anionic and 3D- cationic nanocontainers loaded with Ce and mercaptobenzothiazole. Corros. Sci. 2018, 135, 35–45. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Kuznetsova, A.; Kallip, S.; Starykevich, M.; Tedim, J.; Ferreira, M.G.; Zheludkevich, M.L. A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024. Corros. Sci. 2018, 143, 299–313. [Google Scholar] [CrossRef]
LDH | Anion-Exchanger | Precursors | Alkaline Media | Method | Al Alloy | Synthetic Condition | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
°C | pH | Aging Time (h) | ||||||||
ZnAl | V | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 55 | 6.3–6.5 | 12 | [50] | |
ZnAl | V | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 55 | 6.3–6.5 | 12 | [51] | |
MgAl | (MBT)/(QA) | Mg(NO3)2, Al(NO)3 | NaNO3 | coprecipitation | 2024 | 65 | 10 | 24 | [55] | |
ZnAl | Zn(NO3)2, Al(NO)3 | 2024 | 65 | 10 | 24 | |||||
ZnAlVO3 | - | Zn(NO3)2, Al(NO3)3, NaVO3 | NaOH | coprecipitated | 2024 | 65 | 9.5 | 24 | [56] | |
MgAlVO3 | - | Mg(NO3)2, Al(NO3)3, NaVO3 | NaOH | coprecipitated | 65 | 9.5 | 24 | |||
ZnAl | V | Zn(NO3)2, Al(NO3)3 | NaNO3 | coprecipitated | 65 | 10 | 24 | |||
MgAl | V | Zn(NO3)2, Al(NO3)3 | NaNO3 | coprecipitated | 65 | 10 | 24 | |||
ZnAl | 4-ABSA, 3-ABSA 3,4-HHBA | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 30 | 9 | 12 | [57] | |
ZnAl | - | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 30 | 10 | 12 | [58] | |
ZnAl | Na2CO3 | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 30 | 9 | 12 | ||
ZnAl | K2CrO4 | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 30 | 10.5 | 12 | ||
ZnAl | Na2C10H14N2O | ZnCl2, AlCl3 | NaOH | coprecipitation | 2024 | 30 | 10 | 12 | ||
ZnAlCe | - | Zn(NO3)2, Al(NO3),Ce(NO3)3 | NaNO3 | coprecipitation | 2024 | 65 | 10 | 18 | [59] | |
ZnAl | V | Zn(NO3)2 | - | In situ | 2024 | <100 | 7 | - | [69] | |
ZnAl* | Laurate | Zn(NO3)2 | NH4NO3 | In situ | Al | 45 | 6.5 | 36 | [70] | |
MgAl | 8HQ | Mg(NO3)2 | NH4NO3 | In situ | Al | 100 | 9 | 48 | [71] | |
MgAl | C6H5COON | Mg(NO3)2, urea | NH4NO3 | In situ | 6061 | 45 | 10 | 24 | [72] | |
ZnAl* | V | Zn(NO3)2 | NH4NO3 | In situ | 2198 | 45 | 7 | - | [73] | |
ZnAl* | V | Zn(NO3)2 | NH4NO3 | In situ | 2024 | 95 | 6.5 | 0.5 | [74] | |
ZnAl* | V | Zn(NO3)2 | NH4NO3 | In situ | 2024 | 95 | 6.85 | 0.5 | [75] | |
MgAl | - | Mg(NO3)2, NH4NO3 | NH4OH | In situ | 6082 | 60/80 | 10 | 24 | [64] | |
MgAl | - | Mg(NO3)2 | NH4OH | In situ | 6082 | 60/80/100 | 10 | 18/24 | [40] | |
ZnAl | - | Zn(NO3)2, NH4NO3 | NH4OH | In situ | 6082 | 60/80 | 6/6.5/7 | 18/24 | [76] | |
CaAl | - | Ca(NO3)2 | NaOH | In situ | 6082 | 140 | 10 | 18/24/72 | [77] | |
ZnAl | Laurate | Zn(NO3)2, NH4NO3 | - | In situ | Al | 85 | 6.5 | 12 | [78] | |
NiAl | - | Ni(NO3)2 | NaOH | In situ | 6082 | 130 | 10 | 24 | [79] | |
NiAl | - | Ni(NO3)2, NH4NO3 | NH4OH | In situ | Al | 85 | - | 40 | [80] | |
MgAl | - | Mg(NO3)2, NH4NO3 | - | In situ | 5005 | 125 | 8–10.5 | 1–8 | [81] | |
MgAl | Laurate, Stearate, oleate | Mg(NO3)2, urea | - | In situ | Al | 70 | - | 24 | [82] | |
ZnAl | - | Zn(NO3)2, NH4NO3 | NH4OH | In situ | Al | 120 | 6.5 | - | [83] | |
MgAl | Stearic acid | Mg(NO3)2, NH4NO3 | NH4OH | In situ | 5005 | 125 | 10 | 4 | [84] | |
ZnAl-RGO | RGO | Zn(NO3)2, NH4NO3, Al(NO3)3, RGO | NH4OH | Hydrothermal continuous flow | A6N01 | 130–80 | 5.6 | 0.75–2 | [85] | |
ZnAl | Mo, graphene | Zn(NO3)2, NH4NO3 | - | In situ | 2024 | 45 | 8.8 | 6 | [86] | |
MgAl | Sol gel | Mg(NO3)2, Al(NO3)3 | NaOH | coprecipitation | 2024 | 70 | 18 | [87] | ||
ZnAl | Stearic acid | Zn(CH3COO)2 | NH4OH | In situ | Al | 60 | 4 | [88] | ||
ZnAl | V | Zn(NO3)2 | NH4NO3 | NH4OH | In situ | 2024 | 95 | 6.5 | 0.5 | [89] |
MgAl | PFDTMS | Mg(NO3)2 | NH4OH | In situ | 2198 | 45 | 7 | 80 | [90] | |
CoAl | Co(NO3)2 | |||||||||
NiAl | Ni(NO3)2 | |||||||||
ZnAl | Zn(NO3)2 | |||||||||
ZnAl | MBT/8HQ/V/PA/Mo | Zn(NO3)2 | - | coprecipitation | 2024 | 60 | 20 | [91] | ||
LiAl | Vanillin, aspartic acid | Li(NO3)2 | - | In situ | A6N01 | 60 | 0.33 | [92] |
LDH | Substrate | Potentiodynamic Curves | Electrochemical Impedance Spectroscopy | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Electrolyte (NaCl) | icorr sub. (A cm−2) | icorr Film (A cm−2) | Electrolyte (NaCl) | Immersion Time (h) | Rpol (Ω cm2) | Rcoat (Ω cm2) | |||
ZnAlNO3 | 2024 | - | - | - | 0.05 | 1000 | 105 | - | [69] |
ZnAlV2O7 | - | - | - | 106 | 2 × 103 | ||||
MgAlNO3 | Pure Al | 3.5 wt.% | 1.5 × 10−7 | 1.95 × 10−8 | 3.5 wt.% | 336 | 3.3 × 106 | 82 | [71] |
MgAl-8HQ | 1.02 × 10−9 | 44.3 × 106 | 128 | ||||||
MgAlNO3 | 6061 | - | 0.05M | 10 | 9.3 × 107 | 9.0 × 105 | [72] | ||
MgAl-C6H5COO | 3.7 × 109 | 5.2 × 107 | |||||||
AN-ZnAl | 2198 | - | 0.5M | - | 1.0 × 106 | 6.1 × 102 | [73] | ||
AN-ZnAl-VO3 | 1.0 × 107 | 8.6 × 102 | |||||||
AN-ZnAl-VO3 | 9.7 × 106 | 4.9 × 103 | |||||||
PEO-ZnAlVOx | 2024 | - | 0.5 wt.% | 72 | 47 × 103 | [74] | |||
PEO-ZnAlNO3 | 2024 | 0.05 M | 336 | 1.8 × 107 | 2.3 × 104 | [75] | |||
PEO-ZnAlVOx | - | 3.3 × 104 | |||||||
MgAlNO3 | 6082 | 0.1 M | 7.5 × 10−6 | 8.3 × 10−10 | 0.1 M | - | - | - | [64] |
MgAlNO3 | 6082 | 0.1 M | 7.5 × 10−6 | 1.9 × 10−11 | 0.1 M | 1 | - | 4.2 × 109 | [76] |
MgAlNO3 | 6.3 × 10−10 | 3.8 × 108 | 2.3 × 108 | ||||||
CaAlNO3 | 6082 | 0.1 | 7.5 × 10−6 | 7.0 × 10−10 | - | - | - | - | [77] |
ZnAlNO3 | Pure Al | 3.5 wt.% | 4.4 × 10−6 | 1.1 × 10−7 | 3.5 wt.% | 1 | - | 9.9 × 104 | [78] |
ZnAlLa | 6 × 10−8 | - | 1.2 × 105 | ||||||
NiAlNO3 | 6082 | 0.1 | 7.5 × 10−7 | 1.410−9 | 0.1 | 1 | 2.5 × 109 | 1.4 × 106 | [79] |
NiAlCO3 | Pure Al | 3.5 wt.% | 10−6 | 10−9 | - | - | - | - | [80] |
MgAl-oleate | Pure Al | - | - | - | 3.5 wt.% | 168 | 6.8 × 106 | 8.2 × 104 | [82] |
MgAl Laurate | - | - | - | 7.0 × 1011 | 9.1 × 105 | ||||
MgAl stearate | - | - | - | 6.0 × 1010 | 1.1 × 106 | ||||
MgAl-SA | 5005 | 3.5 wt.% | 1.3 × 10−5 | 2.0 × 10−8 | - | - | - | - | [70] |
ZnAlNO3 | 6N01 | 3.5 wt.% | 4.7 × 10−6 | 5.3 × 10−5 | 3.5 wt.% | 168 | - | 1.9 × 1010 | [85] |
ZnAl/RGO | 4.3 × 10−8 | - | 2.4 × 1010 | ||||||
ZnAlNO3 | 2024 | - | - | - | 3.5 wt.% | 48 | 7.4 × 103 | 2.3 × 102 | [86] |
ZnAlMO | - | - | - | 2.9 × 104 | 9.9 × 102 | ||||
ZnAlMO/GN | - | - | - | 3.9 × 105 | 2.4 × 103 | ||||
LiAlNO3 | A6N01 | 3.5 wt.% | 0.32 × 10−6 | 0.19 × 10−6 | 3.5 wt.% | 120 | 3.5 × 105 | - | [92] |
LiNO3/Vanillin | 0.32 × 10−6 | 0.03 × 10−6 | 3.5 × 107 | 3.8 × 109 | |||||
MgAl-FAS-13 | 6061 | 3.5 wt.% | 1.5 × 10−4 | 7.9 × 10−6 | 3.5 wt.% | 408 | 3.7 × 103 | - | [100] |
MgAl-PVA | 5054 | - | - | - | 3.5 wt.% | 480 | 3.3 × 104 | 7.4 × 104 | [107] |
ZnAlV2O7 | 2024 | - | - | - | 0.5 M | 1 | - | 1.0 × 104 | [132] |
LDH | Substrate | Potentiodynamic Curves | Electrochemical Impedance Spectroscopy | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Electrolyte (NaCl) | icorr sub. (A cm−2) | icorr Film (A cm−2) | Electrolyte (NaCl) | Immersion Time (h) | Rpol (Ω cm2) | Rcoat (Ω cm2) | ||||
ZnAl-V/PVA | 2024 | - | - | - | 0.5 M | 200 | - | 1 × 107 | [50] | |
ZnAl-V/epoxy | 2024 | 0.124 M | 1 × 10−6 | 2 × 10−8 | - | - | - | - | [51] | |
ZnAl/3-ABSA | 2024 | 0.5 M | - | 1.8 × 10−7 | 0.005 M | 1400 | - | 780 | [57] | |
ZnAl/3,4-HHBA | - | 6.4 × 10−7 | - | 290 | ||||||
LDH/4-ABSA | - | 4.4 × 10−7 | - | 910 | ||||||
ZnAl-EDTA | 2024 | 0.5 M | - | 2.9 × 10−7 | 0.5 M | 1608 | - | 8 × 105 | [58] | |
ZnAL-CO3 | - | 3.8 × 10−7 | - | 2 × 104 | ||||||
ZnAl-CrO4 | - | 0.69 × 10−7 | - | 4 × 105 | ||||||
ZnAl-Cl | - | 2.4 × 10−7 | - | 2 × 103 | ||||||
ZnAl-Ce/sol gel | 2024 | - | - | 0.05 | 336 | - | 334.9 | [59] | ||
MgAl-sol-gel | 2024 | - | - | 0.1 M | 210 | - | 300 | [87] | ||
ZnAl E3/E1 | 2024 | 3.5 wt.% | 4.4×10-5 | 1.4 × 10−6 | 3.5 wt.% | 120 | - | 4.1 × 103 | [91] | |
ZnAl-sol-gel | - | - | 7.6 × 10−7 | - | - | - | 7.6 × 103 | |||
ZnAl-sol-gel | - | - | 1.8 × 10−7 | - | - | - | 1.6 × 104 | |||
ZnAl-sol-gel | - | - | 2.6 × 10−7 | - | - | - | 4.6 × 103 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.A.; Sun, L.; Barrett, A.T.; Fedel, M. Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms. Coatings 2020, 10, 428. https://doi.org/10.3390/coatings10040428
Iqbal MA, Sun L, Barrett AT, Fedel M. Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms. Coatings. 2020; 10(4):428. https://doi.org/10.3390/coatings10040428
Chicago/Turabian StyleIqbal, Muhammad Ahsan, Luyi Sun, Allyson T. Barrett, and Michele Fedel. 2020. "Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms" Coatings 10, no. 4: 428. https://doi.org/10.3390/coatings10040428
APA StyleIqbal, M. A., Sun, L., Barrett, A. T., & Fedel, M. (2020). Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms. Coatings, 10(4), 428. https://doi.org/10.3390/coatings10040428