Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere
Abstract
:1. Introduction
2. Experimental
2.1. Indium Zinc Oxide Samples Preparation
2.2. Zinc Oxide Samples Preparation
3. Results
3.1. Flim Morphology, Composition and Crystallinity Characteristics
3.2. Electrical Properties
3.3. UV-Vis Spectroscopy
3.4. Spectral and Colour Function Analysis of the Plasma
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morales-Masis, M.; Nicolas, S.M.D.; Holovsky, J.; Wolf, S.D.; Ballif, C. Low temperature high-mobility amorphous IZO for silicon heterojunction solar cells. IEEE J. Photovolt. 2015, 5, 1340–1347. [Google Scholar] [CrossRef]
- Hagendorfer, H.; Lienau, K.; Nishiwaki, S.; Fella, C.M.; Kranz, L.; Uhl, A.R.; Jaeger, D.; Luo, L.; Gretener, C.; Buecheler, S.; et al. Highly transparent and conductive ZnO: Al thin films from a low-temperature aqueous solution approach. Adv. Mater. 2014, 26, 632–636. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high performance. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Almeida, P.; Barquinha, P.; Pereira, L.; Pimentel, A.; Ferreira, I.; Fortunato, E. Electron transport and optical characterization amorphous indium zinc oxide films. J. Non-Cryst. Solids 2006, 352, 1471–1474. [Google Scholar] [CrossRef]
- Taylor, M.P.; Readey, D.W.; van-Hest, M.F.A.M.; Teplin, C.W.; Alleman, J.L.; Dabney, M.S.; Gedvillas, L.M.; Keyes, B.M.; To, B.; Perkins, J.D.; et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors. Adv. Funct. Mater. 2008, 18, 3169–3178. [Google Scholar] [CrossRef]
- Koida, T.; Michio, K.; Koichi, T.; Akio, S.; Michio, S.; Hiroyuki, F. Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method. J. Appl. Phys. 2010, 107, 033514. [Google Scholar] [CrossRef]
- Park, Y.R.; Nam, E.; Boo, J.; Jung, D.; Suh, S.J.; Kim, Y.S. Hydrogenated In-doped ZnO thin films for the new anode material of organic light-emitting devices: Synthesis and application test. Bull. Korean Chem. Soc. 2007, 28, 2396–2400. [Google Scholar]
- Park, Y.R.; Kim, J.; Kim, Y.S. Growth and characteristics of hydrogenated In-doped ZnO thin films by pulsed DC magnetron sputtering. Appl. Surf. Sci. 2009, 256, 1589–1594. [Google Scholar] [CrossRef]
- Kahn, A. Fermi level, work function, and vacuum level. Mater. Horiz. 2016, 3, 7–10. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Salimian, A.; Haghpanahan, R.; Hasnath, A.; Upadhyaya, H. Optical analysis of RF sputtering plasma through color characterization. Coatings 2019, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Lee, H.-J.; Oh, S.; Park, J.S. Flexible and high-performance amorphous indium Zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl. Mater. Interfaces 2016, 8, 33821–33828. [Google Scholar] [CrossRef] [PubMed]
- Hautier, G.; Miglio, A.; Waroquiers, D.; Rignanese, G.-M.; Gonze, X. How does chemistry influence electron effective mass in oxides? A high-throughput computational analysis. Chem. Mater. 2014, 26, 5447–5458. [Google Scholar] [CrossRef]
- Wallinga, J.; Arnold Bik, W.M.; Vredenberg, A.M.; Schropp, R.E.I.; van der Weg, W.F. Reduction of Tin Oxide by Hydrogen Radicals. J. Phys. Chem. B 1998, 102, 6219. [Google Scholar] [CrossRef]
- De Wit, J.H.W. Electrical properties of In2O3. J. Solid State Chem. 1973, 8, 142. [Google Scholar] [CrossRef]
- Dewit, J.H.W.; Vanunen, G.; Lahey, M. Electron concentration and mobility in In2O3. J. Phys. Chem. Solids 1997, 38, 819–824. [Google Scholar] [CrossRef]
- Luo, S.; Kohiki, S.; Okada, K.; Kohno, A.; Tajiri, T.; Arai, M.; Shoji, F. Effects of Hydrogen in Working Gas on Valence States of Oxygen in Sputter-Deposited Indium Tin Oxide Thin Films. Acs Appl. Mater. Interfaces 2010, 2, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.C.; Scanlon, D.O.; Carmalt, C.J.; Parkin, I.P. n-Typed doped transparent conductive binary oxides: An overview. J. Mater. Chem. C 2016, 4, 6946–6961. [Google Scholar] [CrossRef] [Green Version]
- Van de Walle, C.G. Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett. 2000, 85, 1012–1015. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, D.M.; Hofstaetter, A.; Leiter, F.; Zhou, H.; Henecker, F.; Meyer, B.K.; Baranov, P.G. Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Phys. Rev. Lett. 2002, 88, 045504. [Google Scholar] [CrossRef]
- Cox, S.F.J.; Davis, E.A.; Cottrell, S.P.; King, P.J.C.; Lord, J.S.; Gil, J.M.; Alberto, H.V.; Vilo, R.C.; Piroto Duarte, J.; Ayres de Campos, N.; et al. Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide. Phys. Rev. Lett. 2001, 86, 2601–2604. [Google Scholar] [CrossRef] [PubMed]
- Van de Walle, C.G. Hydrogen as a shallow center in semiconductors and oxides. Phys. Status Solidi 2003, 235, 89–95. [Google Scholar] [CrossRef]
- Knewstubb, P.F.; Tickner, A.W. Mass spectrometry of ions in glow discharges. I. apparatus and its application to the positive column in rare gases. J. Chem. Phys. 1962, 36, 674. [Google Scholar] [CrossRef]
- Gordon, M.H.; Kruger, C.H. Non-equilibrium effects of diluent addition in a recombining argon plasma. Phys. Fluids B Plasma Phys. 1993, 5, 1014. [Google Scholar] [CrossRef]
- Meulenbroeks, R.F.G.; van Beek, A.J.; van Helvoort, A.J.G.; van de Sanden, M.C.M.; Schram, D.C. Argon-hydrogen plasma jet investigated by active and passive spectroscopic means. Phys. Rev. E 1994, 49, 4397–4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, R.S.; Miller, P.D.; Mortimer, I.P. Anomalous loss of ionization in argon-hydrogen plasma studied by fast flow glow discharge mass spectrometry. Phys. Rev. E 1997, 55, 7462–7472. [Google Scholar] [CrossRef]
- Tabares, F.L.; Tafalla, D. Sputtering of metallic walls in Ar/H2 direct current glow discharges at room temperature. J. Vac. Sci. Technol. A 1996, 14, 3087–3091. [Google Scholar] [CrossRef]
- Budtz-Jorgensen, C.V.; Kringhoj, P.; Bottiger, J. The critical role of hydrogen for physical sputtering with Ar–H2 glow discharges. Surf. Coat. Technol. 1999, 116, 938–943. [Google Scholar] [CrossRef]
- Smithwick, R.W., III; Lynch, D.W.; Franklin, J.C. Relative ion yields measured with a high-resolution glow discharge mass spectrometer operated with an argon/hydrogen mixture. J. Am. Soc. Mass Spectrom. 1993, 4, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Saito, M. The relationship between relative sensitivity factors and ionization potential in dc glow discharge mass spectrometry using Ar/0.2 vol.% H2 mixture. Anal. Chim. Acta. 1997, 355, 129–134. [Google Scholar] [CrossRef]
- Saikia, P.; Saikia, B.K.; Bhuyan, H. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films. Aip Adv. 2016, 6, 045206. [Google Scholar] [CrossRef] [Green Version]
- Kakati, H.; Pal, A.R.; Bailung, H.; Chutiya, J. Effect of oxygen on the characteristics of radio frequency planar magnetron sputtering plasma used for aluminum oxide deposition. J. Appl. Phys. 2007, 101, 083304. [Google Scholar] [CrossRef]
- Coburn, J.W.; Chen, M. Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density. J. Appl. Phys. 1980, 51, 3134–3136. [Google Scholar] [CrossRef]
- Lavrov, B.P.; Pipa, A.V.; Röpcke, J. On determination of the degree of dissociation of hydrogen in non-equilibrium plasmas by means of emission spectroscopy: I. The collision-radiative model and numerical experiments. Plasma Sources Sci. Technol. 2006, 15, 135–146. [Google Scholar] [CrossRef]
- Clay, K.J.; Speakman, S.P.; Amaratunga, G.A.J.; Silva, S.R.P. Characterization of a-C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. J. Appl. Phys. 1996, 79, 7227–7233. [Google Scholar] [CrossRef] [Green Version]
Smaple ID | 20 kV | Ratio | 10 kV | Ratio | ||
In | Zn | In | Zn | |||
1 | 8.04 | 3.1 | 2.6 | 28.7 | 8.1 | 3.5 |
2 | 14.1 | 5.2 | 2.7 | 40.2 | 8.4 | 4.8 |
3 | 17.8 | 5.7 | 3.1 | 40 | 8.4 | 4.7 |
4 | 15 | 5.3 | 2.8 | 37 | 8 | 4.6 |
5 | 12.4 | 5.3 | 2.3 | 37 | 9.6 | 3.9 |
6 | 13 | 5.6 | 2.3 | 38 | 9.5 | 4 |
7 | 14 | 5.5 | 2.5 | 38 | 8.7 | 4.4 |
InAs MAC Reference Material | ||||||
Smaple ID | 20 kV | Ratio | 10 kV | Ratio | ||
In | As | In | As | |||
Area 1 | 47.8 | 52.2 | 0.9 | 46 | 54 | 0.9 |
Area 2 | 49.4 | 50.6 | 1 | 44 | 56 | 0.9 |
Area 3 | 47.9 | 52.1 | 0.9 | 46 | 54 | 0.9 |
Area 4 | 48 | 52 | 0.9 | 46 | 54 | 0.9 |
Area 2 with Carbon built-up | - | - | - | 8.1 | 9.1 | 0.9 |
Area 250 μm × 250 μm | - | - | - | 46 | 54 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimian, A.; Hasnath, A.; Anguilano, L.; Onwukwe, U.; Aminishahsavarani, A.; Sachez, C.; Upadhyaya, H. Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere. Coatings 2020, 10, 472. https://doi.org/10.3390/coatings10050472
Salimian A, Hasnath A, Anguilano L, Onwukwe U, Aminishahsavarani A, Sachez C, Upadhyaya H. Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere. Coatings. 2020; 10(5):472. https://doi.org/10.3390/coatings10050472
Chicago/Turabian StyleSalimian, Ali, Abul Hasnath, Lorna Anguilano, Uchechukwu Onwukwe, Arjang Aminishahsavarani, Cova Sachez, and Hari Upadhyaya. 2020. "Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere" Coatings 10, no. 5: 472. https://doi.org/10.3390/coatings10050472
APA StyleSalimian, A., Hasnath, A., Anguilano, L., Onwukwe, U., Aminishahsavarani, A., Sachez, C., & Upadhyaya, H. (2020). Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere. Coatings, 10(5), 472. https://doi.org/10.3390/coatings10050472