Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.1.1. Commercial Products
2.1.2. Monomer
2.1.3. Additives
2.1.4. Thermal Initiator
2.1.5. Non-Commercial Products
2.2. Irradiation Source
2.3. Free Radical Photopolymerization (FRP)
2.4. ESR Spin Trapping (ESR-ST) Experiments
2.5. Thermal Measurements
2.6. Differential Scanning Calorimetric (DSC) Measurements
3. Results
3.1. Photopolymerization Results
3.2. Simultaneous Thermal Imaging and Conversion Measurements
3.3. Blank Experiments
4. Discussion
4.1. ESR-ST Experiments
4.2. Conclusion about Mechanistic Aspects
- the polymerization is induced by light irradiation
- some heat is released by the polymerization process and this latter is capable of initiating the dissociation of a thermal initiator
- In the present section, a third hypothesis has been confirmed:
- the thermal initiator dissociation enhances the polymerization process by the creation of additional initiating species.
4.3. Comparison with Other Monomers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Information Resources Management Association. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017. [Google Scholar]
- Moad, G.; Solomon, D.H. The Chemistry of Radical Polymerization; Elsevier Science: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Fouassier, J.P.; Lalevée, J. Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Andrzejewska, E.; Grajek, K. Recent advances in photo-induced free-radical polymerization. MOJ Polym. Sci. 2017, 1, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Bonardi, A.-H.; Zahouily, S.; Dietlin, C.; Graff, B.; Morlet-Savary, F.; Ibrahim-Ouali, M.; Gigmes, D.; Hoffmann, N.; Dumur, F.; Lalevée, J. New 1,8-naphthalimide derivatives as photoinitiators for free-radical polymerization upon visible light. Catalysts 2019, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Moseley, H. Ultraviolet and laser radiation safety. Phys. Med. Biol. 1994, 39, 1765–1799. [Google Scholar] [CrossRef] [PubMed]
- Gigmes, D.; Dufils, P.-E.; Glé, D.; Bertin, D.; Lefay, C.; Guillaneuf, Y. Intermolecular radical 1,2-addition of the BlocBuilder MA alkoxyamine onto activated olefins: A versatile tool for the synthesis of complex macromolecular architecture. Polym. Chem. 2011, 2, 1624–1631. [Google Scholar] [CrossRef]
- Grishin, D.F.; Grishin, I.D. Mechanisms of Polymer Polymerization. In Polymeric Materials for Clean Water; Das, R., Ed.; Springer Series on Polymer and Composite Materials; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–58. [Google Scholar]
- Bonardi, A.-H.; Bonardi, F.; Morlet-Savary, F.; Dietlin, C.; Noirbent, G.; Grant, T.M.; Fouassier, J.-P.; Dumur, F.; Lessard, B.H.; Gigmes, D.; et al. Photoinduced thermal polymerization reactions. Macromolecules 2018, 51, 8808–8820. [Google Scholar] [CrossRef]
- Muthiah, J.; Daly, A.T.; Haley, R.P.; Kozlowski, J.J. Dual Thermal and Ultraviolet Curable Powder Coatings. Patent US6017640A, 25 January 2000. [Google Scholar]
- Molock, F.; Cullerton, G.; Mahadevan, S. Photochromic Ophthalmic Devices Made with Dual Initiator System. Patent US20060227287A1, 12 October 2006. [Google Scholar]
- Retailleau, M.; Ibrahim, A.; Allonas, X. Dual-cure photochemical/thermal polymerization of acrylates: A photoassisted process at low light intensity. Polym. Chem. 2014, 5, 6503–6509. [Google Scholar] [CrossRef]
- Lalevée, J.; Blanchard, N.; Tehfe, M.-A.; Peter, M.; Morlet-Savary, F.; Fouassier, J.P. A novel photopolymerization initiating system based on an iridium complex photocatalyst. Macromol. Rapid Commun. 2011, 32, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Tehfe, M.-A.; Lalevée, J.; Gigmes, D.; Fouassier, J.P. Green chemistry: Sunlight-induced cationic polymerization of renewable epoxy monomers under air. Macromolecules 2010, 43, 1364–1370. [Google Scholar] [CrossRef]
- Duling, D.R. Simulation of multiple isotropic spin-trap EPR spectra. J. Magn. Reson. B 1994, 104, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Garra, P.; Bonardi, A.-H.; Baralle, A.; Al Mousawi, A.; Bonardi, F.; Dietlin, C.; Morlet-Savary, F.; Fouassier, J.-P.; Lalevée, J. Monitoring photopolymerization reactions through thermal imaging: A unique tool for the real-time follow-up of thick samples, 3d printing, and composites. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 889–899. [Google Scholar] [CrossRef]
- Nicolas, J.; Brusseau, S.; Charleux, B. A minimal amount of acrylonitrile turns the nitroxide-mediated polymerization of methyl methacrylate into an almost ideal controlled/living system. J. Polym. Sci. Part A: Polym. Chem. 2009, 48, 34–47. [Google Scholar] [CrossRef]
- Garra, P.; Graff, B.; Morlet-Savary, F.; Dietlin, C.; Becht, J.-M.; Fouassier, J.-P.; Lalevée, J. Charge transfer complexes as pan-scaled photoinitiating systems: From 50 μm 3d printed polymers at 405 nm to extremely deep photopolymerization (31 cm). Macromolecules 2018, 51, 57–70. [Google Scholar] [CrossRef]
- Bonardi, A.H.; Bonardi, F.; Dumur, F.; Gigmes, D.; Fouassier, J.P.; Lalevee, J. Fillers as heaters for photothermal polymerization upon NIR light. Macromol. Rapid Commun. 2019, 40, 1900495. [Google Scholar] [CrossRef] [PubMed]
- Guillaneuf, Y.; Bertin, D.; Gigmes, D.; Versace, D.-L.; Lalevée, J.; Fouassier, J.-P. Toward nitroxide-mediated photopolymerization. Macromolecules 2010, 43, 2204–2212. [Google Scholar] [CrossRef]
- Poole, C.P.J.; Farach, H.A. (Eds.) Handbook of Electron Spin Resonance; Springer: New York, NY, USA, 1999. [Google Scholar]
- Bevington, J.C.; Harris, D.O. Reactivities of acrylates and methacrylates. J. Polym. Sci. Part B: Polym. Lett. 1967, 5, 799–802. [Google Scholar] [CrossRef]
- Msaadi, R.; Yilmaz, G.; Allushi, A.; Hamadi, S.; Ammar, S.; Chehimi, M.M.; Yagci, Y. Highly selective copper ion imprinted clay/polymer nanocomposites prepared by visible light initiated radical photopolymerization. Polymers 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zou, X.; Shi, F.; Liu, R.; Yagci, Y. Highly efficient dandelion-like near-infrared light photoinitiator for free radical and thiol-ene photopolymerizations. Nat. Commun. 2019, 10, 3560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Heil, T.; Kumru, B.; Antonietti, M.; Schmidt, B.V.K. Visible-light induced emulsion photopolymerization with carbon nitride as a stabilizer and photoinitiator. Polym. Chem. 2019, 10, 5315–5323. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonardi, A.-H.; Zahouily, S.; Dietlin, C.; Graff, B.; Dumur, F.; Ibrahim-Ouali, M.; Gigmes, D.; Lalevée, J. Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light. Coatings 2020, 10, 478. https://doi.org/10.3390/coatings10050478
Bonardi A-H, Zahouily S, Dietlin C, Graff B, Dumur F, Ibrahim-Ouali M, Gigmes D, Lalevée J. Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light. Coatings. 2020; 10(5):478. https://doi.org/10.3390/coatings10050478
Chicago/Turabian StyleBonardi, Aude-Héloise, Soraya Zahouily, Céline Dietlin, Bernadette Graff, Frédéric Dumur, Malika Ibrahim-Ouali, Didier Gigmes, and Jacques Lalevée. 2020. "Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light" Coatings 10, no. 5: 478. https://doi.org/10.3390/coatings10050478
APA StyleBonardi, A. -H., Zahouily, S., Dietlin, C., Graff, B., Dumur, F., Ibrahim-Ouali, M., Gigmes, D., & Lalevée, J. (2020). Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light. Coatings, 10(5), 478. https://doi.org/10.3390/coatings10050478