Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pad-Dry-Cure Treatment
2.3. Washing Test
2.4. Antibacterial Property
2.5. Scanning Electron Microscopy (SEM) Observation
2.6. Qualitative Determination of PHMB by Dyeing with BPB
2.7. Fourier Transform Infrared Spectroscopy Analysis
2.8. Tearing Strength Analysis
2.9. Hand Feel Measurement
3. Results
3.1. Surface Morphology
3.2. FTIR Measuremnt
3.3. Effect of Concentration of PHMB on Antibacterial Activity
3.4. Effect of Detergent on Antibacterial Activity
3.5. Effect of Washing Cycles on Antibacterial Activity
3.6. Tearing Strength Analysis
3.7. Hand Feel Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rong, L.; Liu, H.; Wang, B.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Feng, X.; Sui, X. Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydr. Polym. 2019, 211, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Periolatto, M.; Ferrero, F.; Vineis, C.; Varesano, A.; Gozzelino, G. Novel Antimicrobial Agents and Processes for Textile Applications. In Antibacterial Agents; IntechOpen: London, UK, 2017; Chapter 2. [Google Scholar]
- Yuan, G.; Cranston, R. Recent Advances in Antimicrobial Treatments of Textiles. Text Res. J. 2008, 78, 60–72. [Google Scholar] [CrossRef]
- Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; De La Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C 2017, 74, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Chen, C.; Li, D.; Ek, M. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cellulose 2019, 26, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloid Surf. B 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Morais, D.; Guedes, R.; Lopes, M.A. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Gargoubi, S.; Tolouei, R.; Chevallier, P.; Levesque, L.; Ladhari, N.; Boudokhane, C.; Mantovani, D. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study. Carbohyd. Polym. 2016, 147, 28–36. [Google Scholar] [CrossRef]
- Windler, L.; Height, M.; Nowack, B. Comparative evaluation of antimicrobials for textile applications. Environ. Int. 2013, 53, 62–73. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Naggar, M.; Fouda, M.M.; Ramadan, M.A.; Al-Deyab, S.S.; El-Rafie, M. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr. Polym. 2011, 86, 936–940. [Google Scholar] [CrossRef]
- Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yuan, L.; Li, Q.; Li, J.; Zhu, X.; Jiang, Y.; Sha, O.; Yang, X.; Xin, J.H.; Wang, J.; et al. Durable Antibacterial and Nonfouling Cotton Textiles with Enhanced Comfort via Zwitterionic Sulfopropylbetaine Coating. Small 2016, 12, 3516–3521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Tang, B.; Yuan, L.; Wang, K.; Liu, X.; Zhu, X.; Li, J.; Ge, Z.; Chen, S.; et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem. Eng. J. 2018, 336, 123–132. [Google Scholar] [CrossRef]
- Mohsin, M.; Sardar, S. Development of sustainable and cost efficient textile foam-finishing and its comparison with conventional padding. Cellulose 2020, 27, 4091–4107. [Google Scholar] [CrossRef]
- Simončič, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles-A Review. Text. Res. J. 2010, 80, 1721–1737. [Google Scholar] [CrossRef]
- Chindera, K.; Mahato, M.; Sharma, A.K.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N.F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T.; et al. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 2016, 6, 23121. [Google Scholar] [CrossRef] [PubMed]
- Sanada, H.; Nakagami, G.; Takehara, K.; Goto, T.; Ishii, N.; Yoshida, S.; Ryu, M.; Tsunemi, Y. Antifungal Effect of Non-Woven Textiles Containing Polyhexamethylene Biguanide with Sophorolipid: A Potential Method for Tinea Pedis Prevention. Healthcare 2014, 2, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.; Wang, Y.-J.; Gao, Y.; Gao, T.; Gao, G. Chemical Insights into AntibacterialN-Halamines. Chem. Rev. 2017, 117, 4806–4862. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Naggar, M.E.; Tawfik, S.; Zaghloul, S.; Sharaf, S. Hyperbranched polymer–silver nanohybrid induce super antibacterial activity and high performance to cotton fabric. Cellulose 2019, 26, 3543–3555. [Google Scholar] [CrossRef]
- Tayel, A.A.; Moussa, S.H.; El-Tras, W.F.; Elguindy, N.; Opwis, K. Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. Int. J. Boil. Macromol. 2011, 49, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Khalil-Abad, M.S.; Yazdanshenas, M.E. Superhydrophobic antibacterial cotton textiles. J. Colloid Interface Sci. 2010, 351, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Suryaprabha, T.; Sethuraman, M.G. Design of electrically conductive superhydrophobic antibacterial cotton fabric through hierarchical architecture using bimetallic deposition. J. Alloy. Compd. 2017, 724, 240–248. [Google Scholar]
- Chauhan, P.; Kumar, A.; Bhushan, B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. J. Colloid Interface Sci. 2019, 535, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, S.; Jiang, S.; Xiong, M.; Luo, J.; Tang, J.; Ge, Z. Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine. ACS Appl. Mater. Interfaces 2011, 3, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Deng, B.; Lv, M.; Li, J.; Zhang, Y.; Jiang, H.; Peng, C.; Li, J.; Shi, J.; Huang, Q.; et al. Graphene Oxide-Based Antibacterial Cotton Fabrics. Adv. Heal. Mater. 2013, 2, 1259–1266. [Google Scholar] [CrossRef]
- Llorens, E.; Calderon, S.; Del Valle, L.J.; Puiggalí, J. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater. Sci. Eng. C 2015, 50, 74–84. [Google Scholar]
- ISO Central Secretariat. EN ISO 2871-1:2010 Surface Active Agents—Detergents—Determination of Cationic-Active Matter Content—Part 1: High-Molecular-Mass Cationic-Active Matter; ISO Central Secretariat: Geneva, Switzerland, 2010. [Google Scholar]
- ISO Central Secretariat. EN ISO 2871-2:2010 Surface Active Agents—Detergents—Determination of Cationic-Active Matter Content—Part 2: Cationic-Active Matter of Low Molecular Mass (between 200 and 500); ISO Central Secretariat: Geneva, Switzerland, 2010. [Google Scholar]
- Wan, M.; Hua, L.; Zeng, Y.; Jiao, P.; Xie, D.; Tong, Z.; Wu, G.; Zhou, Y.; Tang, Q.; Mo, F. Synthesis and properties of novel stilbene-twelve alkyl quaternary ammonium salts as antibacterial optical whitening agents. Cellulose 2017, 24, 3209–3218. [Google Scholar] [CrossRef]
- Bueno, L.; Amador, C.; Bakalis, S. Modeling the deposition of fluorescent whitening agents on cotton fabrics. AIChE J. 2017, 64, 1305–1316. [Google Scholar] [CrossRef] [Green Version]
- Chen-Yu, J.H.; Eberhardt, D.M.; Kincade, D.H. Antibacterial and Laundering Properties of AMS and PHMB as Finishing Agents on Fabric for Health Care Workers’ Uniforms. Cloth. Text. Res. J. 2007, 25, 258–272. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, X.; Pierlot, A.P.; Denning, R.; Cranston, R. A simultaneous antimicrobial and shrink resistance treatment of wool woven fabrics using the polymeric biocide polyhexamethylene biguanide. J. Mater. Sci. 2011, 46, 3020–3026. [Google Scholar] [CrossRef]
- Blackburn, R.S.; Harvey, A.; Kettle, L.L.; Payne, J.D.; Russell, S.J. Sorption of Poly(hexamethylenebiguanide) on Cellulose: Mechanism of Binding and Molecular Recognition†. Langmuir 2006, 22, 5636–5644. [Google Scholar]
- Lomax, G.R. Breathable polyurethane membranes for textile and related industries. J. Mater. Chem. 2007, 17, 27757. [Google Scholar] [CrossRef]
- Sarkar, J.; Khalil, E. Effect of Industrial Bleach Wash and Softening on the Physical, Mechanical and Color Properties of Denim Garments. IOSR J. Polym. Text. Eng. 2014, 1, 46–49. [Google Scholar] [CrossRef]
- Sarkar, J.; Khalil, E.; Solaiman, M. Effect of Enzyme Washing Combined with Pumice Stone on the Physical, Mechanical and Color Properties of Denim Garments. Int. J. Res. Advent Technol. 2014, 2, 65–68. [Google Scholar]
- Halleb, N.A.; Sahnoun, M.; Cheikhrouhou, M. The effect of washing treatments on the sensory properties of denim fabric. Text. Res. J. 2014, 85, 150–159. [Google Scholar] [CrossRef]
- Uren, N.; Okur, A. Analysis and improvement of tactile comfort and low-stress mechanical properties of denim fabrics. Text. Res. J. 2019, 89, 4842–4857. [Google Scholar] [CrossRef]
No Detergent 0 | With Detergent 1 | |
---|---|---|
Solution 1 1 | S10 | S11 |
Solution 2 2 | S20 | S21 |
Sample | PHMB Conc./% | Inhibition Zone/mm | |
---|---|---|---|
S. aureus | K. pneumoniae | ||
Control | 0 | 0 | 0 |
1 | 2.5 | 4.5 | 3.5 |
2 | 5 | 4.5 | 5.5 |
3 | 10 | 4.75 | 6.75 |
4 | 15 | 6.75 | 7.25 |
Washing Cycles | Detergent | Detergent + NaClO | ||
---|---|---|---|---|
Inhibition/% 1 | Disinfection/% 2 | Inhibition/% 1 | Disinfection/% 2 | |
Control, no wash | 0 | 0 | 0 | 0 |
26 | 0 | 100 | 0 | 100 |
52 | 0 | 100 | 0 | 100 |
104 | 0 | 100 | 0 | 100 |
Washing Cycles | Inhibition/% 1 | Disinfection/% 2 | ||
---|---|---|---|---|
S. aureus | K. pneumoniae | S. aureus | K. pneumoniae | |
no wash | 100 | 100 | 100 | 100 |
26 | 100 | 100 | 100 | 100 |
52 | 100 | 100 | 100 | 100 |
104 | 95 | 38.6 | 0 | 0 |
Sample | PHMB (%, v/v) | PEG (%, v/v) | Binder (%, v/v) |
---|---|---|---|
G1 | 5 | 5 | 5 |
G2 | 5 | 3 | 5 |
G3 | 5 | 1 | 5 |
G4 | 5 | 0 | 5 |
G5 | 5 | 5 | 3 |
G6 | 5 | 3 | 3 |
G7 | 5 | 1 | 3 |
G8 | 5 | 0 | 3 |
Sample | Resilience | Softness | Smoothness | HFI | Whiteness |
---|---|---|---|---|---|
Control | 82.3 | 78.4 | 82.3 | 243.0 | 84.6 |
G1 | 80.3 | 76.7 | 81.2 | 238.2 | 83.9 |
G2 | 82.4 | 77.3 | 81.2 | 240.9 | 83.5 |
G3 | 83.0 | 77.4 | 81.5 | 241.9 | 82.4 |
G4 | 82.9 | 78.1 | 81.3 | 242.3 | 84.2 |
G5 | 82.2 | 78.6 | 81.6 | 242.4 | 83.2 |
G6 | 82.3 | 78.4 | 81.2 | 241.9 | 84.2 |
G7 | 83.0 | 77.2 | 81.8 | 242.0 | 82.5 |
G8 | 82.9 | 77.4 | 81.9 | 242.2 | 83.2 |
Sample | Resilience | Softness | Smoothness | HFI | Whiteness |
---|---|---|---|---|---|
Control | 79.3 | 78.0 | 79.5 | 236.8 | 82.7 |
G1 | 80.2 | 76.4 | 80.1 | 236.7 | 61.1 |
G2 | 79.8 | 76.4 | 79.7 | 235.9 | 63.5 |
G3 | 80.5 | 76.4 | 80.4 | 237.3 | 63. 2 |
G4 | 80.3 | 76.6 | 78.0 | 234.9 | 61.9 |
G5 | 80.8 | 76.8 | 80.6 | 238.2 | 62.3 |
G6 | 79.6 | 77.2 | 79.2 | 236.0 | 61.0 |
G7 | 80.0 | 76.7 | 80.0 | 236.7 | 63.6 |
G8 | 81.3 | 76.9 | 80.4 | 238.6 | 61.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-Y.; Chiou, J.-C.; Yip, J.; Yung, K.-F.; Kan, C.-W. Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment. Coatings 2020, 10, 520. https://doi.org/10.3390/coatings10060520
Wang W-Y, Chiou J-C, Yip J, Yung K-F, Kan C-W. Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment. Coatings. 2020; 10(6):520. https://doi.org/10.3390/coatings10060520
Chicago/Turabian StyleWang, Wen-Yi, Jia-Chi Chiou, Joanne Yip, Ka-Fu Yung, and Chi-Wai Kan. 2020. "Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment" Coatings 10, no. 6: 520. https://doi.org/10.3390/coatings10060520
APA StyleWang, W. -Y., Chiou, J. -C., Yip, J., Yung, K. -F., & Kan, C. -W. (2020). Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment. Coatings, 10(6), 520. https://doi.org/10.3390/coatings10060520