Reduction of Friction and Soil Adhesion of Medium Carbon Steel via Hard Coating and Surface Texture
Abstract
:1. Introduction
2. Experimental
2.1. Coating Preparation and Surface Texturing
2.2. Microstructure Characteristic and Hardness Test of the Coating
2.3. Friction Test
2.4. Soil Adhesion Test
2.5. Wettability Test
3. Results and Discussion
3.1. Microstructure of 2Cr13 Coating
3.2. Micro-Hardness of 2Cr13 Coating
3.3. Friction Behavior
3.4. Adhesion Resistance
3.5. Wettability Test
3.6. Influence Mechanism of Surface Texture on the Wear Behavior and Soil Adhesion
- Adhesion increased with the soil moisture and then decreased when exceeding the moisture content threshold;
- Coated samples with dimples revealed lower soil adhesion than samples without dimples;
- The adhesion force decreased with the increase of the size of the dimples.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, L.; Wang, Y.; Li, J.; Tong, J. Flexible unsmoothed cuticles of soil animals and their characteristics of reducing adhesion and resistance. Chin. Sci. Bull. 1998, 43, 166–169. [Google Scholar] [CrossRef]
- Qaisrani, R.; Jian-qiao, L.; Khan, M.A.; Iram, R. Soil adhesion preventing mechanism of bionic bulldozing plates and mouldboard ploughs. Adv. Nat. Sci. 2010, 3, 100–107. [Google Scholar]
- Tong, J.; Zhang, Q.Z.; Chen, D.H.; Chang, Y.; Wang, H.C. Effects of bionic geometric structure press rollers on reducing rolling resistance and adhesion against soil. Appl. Mech. Mat. 2013, 461, 63–72. [Google Scholar] [CrossRef]
- Soni, P.; Salokhe, V.M. Influence of dimensions of UHMW-PE protuberances on sliding resistance and normal adhesion of bangkok clay soil to biomimetic plates. Bionic. Eng. 2006, 3, 63–71. [Google Scholar] [CrossRef]
- Hurricks, P.L. Some metallurgical factors controlling the adhesive and abrasive wear resistance of steels. A review. Wear 1973, 26, 285–304. [Google Scholar] [CrossRef]
- Hao, J.; Yang, Z.; Ma, L.; Zhao, J.; Liu, J. Fe-Cr-C-V plasma surfacing layer improving wear resistance and impact toughness of rotary blade. Trans. Chin. Soc. Agric. Eng. 2019, 35, 24–30. [Google Scholar]
- Ren, L.Q.; Tong, J.; Li, J.Q.; Chen, B.C. Soil adhesion and biomimetics of soil-engaging components: A review. Agric. Eng. Res. 2001, 79, 239–263. [Google Scholar] [CrossRef] [Green Version]
- Rosso, M.; Peter, I.; Gobber, F.S. Overview of heat treatment and surface engineering, influences of surface finishing on hot-work tool steel. Int. J. Microstruct. Mater. Prop. 2015, 10, 3–30. [Google Scholar] [CrossRef]
- Marani, S.M.; Shahgholi, G.; Moinfar, A. Effect of nano coating materials on reduction of soil adhesion and external friction. Soil Tillage Res. 2019, 193, 42–49. [Google Scholar] [CrossRef]
- Barzegar, M.; Hashemi, S.J.; Nazokdast, H.; Karimi, R. Evaluating the draft force and soil-tool adhesion of a UHMW-PE coated furrower. Soil Tillage Res. 2016, 163, 160–167. [Google Scholar] [CrossRef]
- Li, J.W.; Tong, J.; Hu, B.; Ma, Y.H. Biomimetic functional surface of reducing soil adhesion on 65Mn steel. Adv. Mech. Eng. 2019, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Wang, W.; Wang, W.; Zheng, J.; Wang, Q.; Zhuang, J. Application of anti-adhesion structure based on earthworm motion characteristics. Soil Tillage Res. 2018, 178, 159–166. [Google Scholar] [CrossRef]
- Cabezudo, N.; Sun, J.; Andi, B.; Ding, F.; Wang, D.; Chang, W.; Xu, B.B. Enhancement of surface wettability via micro-and nanostructures by single point diamond turning. Nanotech. Prec. Eng. 2019, 2, 8–14. [Google Scholar] [CrossRef]
- Wos, S.; Koszela, W.; Pawlus, P. The effect of both surfaces textured on improvement of tribological properties of sliding elements. Tribol. Int. 2017, 113, 182–188. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372–373, 21–41. [Google Scholar] [CrossRef]
- Rom, M.; Müller, S. A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects. Tribol. Int. 2019, 133, 55–66. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Wei, X.; Liu, G.; Hua, M.; Li, P. Fabrication of textured composite surface and its tribological properties under starved lubrication and dry sliding conditions. Surf. Coat. Technol. 2018, 350, 313–332. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Wu, Z.; Wu, F. High friction and low wear properties of laser-textured ceramic surface under dry friction. Opt. Laser Technol. 2017, 93, 24–32. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kharaziha, M.; Salimijazi, H.R. Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf. Coat. Technol. 2019, 362, 282–292. [Google Scholar] [CrossRef]
- Liu, W.; Ni, H.; Wang, P.; Chen, H. Investigation on the tribological performance of micro-dimples textured surface combined with longitudinal or transverse vibration under hydrodynamic lubrication. Sci. Int. J. Mech. 2020, 174, 105474. [Google Scholar] [CrossRef]
- Liu, W.; Ni, H.; Chen, H.; Wang, P. Numerical simulation and experimental investigation on tribological performance of micro-dimples textured surface under hydrodynamic lubrication. Int. J. Mech. Sci. 2019, 163, 105095. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, X.; Yuan, C.; Bai, X. Study on influence of micro convex textures on tribological performances of UHMWPE material under the water-lubricated conditions. Wear 2019, 426–427, 1327–1335. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S.Y.; Kumbhar, V.S.; Uhm, S.; Kim, H.J.; Lee, K. Formation of aluminum oxide nanostructures via anodization of Al3104 alloy and their wettability behavior for self-cleaning application. Catal. Today 2020. [Google Scholar] [CrossRef]
- Wang, G.; Weng, D.; Chen, C.; Chen, L.; Wang, J. Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion. Coll. Interf. Sci. Commun. 2020, 34, 100220. [Google Scholar] [CrossRef]
- Meng, R.; Deng, J.; Liu, Y.; Duan, R.; Zhang, G. Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating. Int. J. Refract. Meter. Hard Mat. 2018, 72, 163–171. [Google Scholar] [CrossRef]
- Goshtasb, A.; Fielke, J.; Desbiolles, J. A review of soil/tool adhesion principles and approaches to reducing limitations of disc seeders. In Agricultural Technologies in a Changing Climate: The 2009 CIGR International Symposium of the Australian Society for Engineering in Agriculture; Engineers Australia: Darwin City, Australia, 2009. [Google Scholar]
- Yuan, Y.; Lee, T.R. Contact angle and wetting properties. Surf. Sci. Techonl. 2013, 51, 3–34. [Google Scholar]
- Wen, S. Principles of Tribology, Beijing; Tsinghua University Press: Beijing, China, 1990. [Google Scholar]
- Li, D.; Yang, X.F.; Lu, C.Y.; Cheng, J.; Wang, S.R.; Wang, Y.J. Tribological characteristics of a cemented carbide friction surface with chevron pattern micro-texture based on different texture density. Tribol. Int. 2020, 142, 11. [Google Scholar]
- Zhou, H.; Shi, X.; Yang, Z.; Wu, C.; Lu, G.; Xue, Y. Tribological property and frictional noise performance of titanium alloys with Sn–Ag–Cu and TiC filled into surface dimples. Tribol. Int. 2020, 144, 106–121. [Google Scholar] [CrossRef]
- Nikolaeva, I.N. Stickiness of dark chestnut heavy loam and loam soils of the kustanai oblast under conditions of vertical tearing and tangential shear. Lipkost’ Temno-Kashtanovykh Tyazhelosuglinistykh i Supeschanykh Pochv Kustanaiskoi Oblasti pri Vertikal’nom Otryve I Tangentsial’nom Sdvige. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300554312 (accessed on 12 June 2020).
- Neal, M.S. Friction and adhesion between soil and rubber. J. Agri. Eng. Res. 1966, 11, 108–112. [Google Scholar] [CrossRef]
- Ashokkumar, S.; Adler-Nissen, J.; Møller, P. Factors affecting the wettability of different surface 397 materials with vegetable oil at high temperatures and its relation to cleanability. Appl. Surf. Sci. 2012, 263, 86–94. [Google Scholar] [CrossRef]
- Latthe, S.S.; Gurav, A.B.; Maruti, C.S.; Vhatkar, R.S. Recent progress in preparation of superhydrophobic surfaces: A review. J. Surf. Eng. Mat. Adv. Techonl. 2012, 2, 76–94. [Google Scholar]
- Chen, L.; Wang, S.Y.; Xiang, X.; Tao, W.Q. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput. Mater. Sci. 2020, 171, 109223. [Google Scholar] [CrossRef]
- Qiu, Y.; Khonsari, M.M. Experimental investigation of tribological performance of laser textured stainless steel rings. Tribol. Int. 2011, 44, 635–644. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Feng, X.; Yu, S. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction. Mater. Des. 2013, 52, 234–245. [Google Scholar] [CrossRef]
- Flegler, F.; Neuhäuser, S.; Groche, P. Influence of sheet metal texture on the adhesive wear and friction behaviour of EN AW-5083 aluminum under dry and starved lubrication. Tribol. Int. 2019, 141, 105956. [Google Scholar] [CrossRef]
- Lepage, J.; Brion, J.M. Paper VIII (iv) role of wear debris in the environmental effect in tribology. Tribology 1992, 21, 369–374. [Google Scholar]
- Ren, L. Soil Adhesion Mechanics; Mechanical industry press: Beijing, China, 2011. [Google Scholar]
- Yang, J.; Liu, Z.; Cheng, Q.; Liu, X.; Deng, T. The effect of wear on the frictional vibration suppression of water-lubricated rubber slat with/without surface texture. Wear 2019, 426–427, 1304–1317. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yang, W.J.; Wu, Y.P.; Wu, S.B.; Cai, Z.B. Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl. Surf. Sci. 2017, 403, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Adachi, K.; Otsuka, K.; Kato, K. Optimization of the surface texture for silicon carbide sliding in water. Appl. Surf. Sci. 2006, 253, 1282–1286. [Google Scholar] [CrossRef]
Samples | Diameter (μm) | Distance (μm) | Depth (μm) | Dimple Area Ratio (%) |
---|---|---|---|---|
SCT1 | 100 | 600 | 400 | 2.04 |
SCT2 | 200 | 600 | 400 | 8.28 |
SCT3 | 300 | 600 | 400 | 18.65 |
SCT4 | 400 | 600 | 400 | 33.15 |
Elements (at. %) | Fe | Cr | C | Si | Cu | O |
---|---|---|---|---|---|---|
Eutectic ledeburite | 53.33 | 20.29 | 21.73 | 0.65 | - | 4.00 |
Primary cementite | 46.98 | 16.66 | 30.11 | 0.75 | 0.59 | 4.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wan, Q.; Zhou, M.; Xu, G.; Yu, J.; Du, X.; Wei, M.; Meng, L.; Li, S. Reduction of Friction and Soil Adhesion of Medium Carbon Steel via Hard Coating and Surface Texture. Coatings 2020, 10, 561. https://doi.org/10.3390/coatings10060561
Wang H, Wan Q, Zhou M, Xu G, Yu J, Du X, Wei M, Meng L, Li S. Reduction of Friction and Soil Adhesion of Medium Carbon Steel via Hard Coating and Surface Texture. Coatings. 2020; 10(6):561. https://doi.org/10.3390/coatings10060561
Chicago/Turabian StyleWang, Haobin, Qiang Wan, Min Zhou, Gen Xu, Jiahuan Yu, Xuan Du, Min Wei, Liang Meng, and ShanJun Li. 2020. "Reduction of Friction and Soil Adhesion of Medium Carbon Steel via Hard Coating and Surface Texture" Coatings 10, no. 6: 561. https://doi.org/10.3390/coatings10060561
APA StyleWang, H., Wan, Q., Zhou, M., Xu, G., Yu, J., Du, X., Wei, M., Meng, L., & Li, S. (2020). Reduction of Friction and Soil Adhesion of Medium Carbon Steel via Hard Coating and Surface Texture. Coatings, 10(6), 561. https://doi.org/10.3390/coatings10060561