Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Composition
3.2. Microscopic and Morphology
3.3. Optical Properties
3.4. Electrochromic and Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deb, S.K. A novel electrophotographic system. Appl. Opt. 1969, 8, 192–195. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. A 2007, 17, 127–156. [Google Scholar] [CrossRef] [Green Version]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Chang, J.Y.; Chen, Y.C.; Wang, C.M.; Wang, W.N.; Wen, C.Y.; Lin, J.M. Electrochromic properties of Lithium-doped tungsten oxide prepared by electron beam evaporation. Coatings 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Koo, B.R.; Ahn, H.J. Title of the chapter Sheet resistance dependence of fluorine-doped tin oxide films for high-performance electrochromic devices. Ceram. Int. 2018, 44, 9408–9413. [Google Scholar] [CrossRef]
- Jiang, B.; Lou, B.; Li, J.; Peng, P.; Chen, J.W.; Chu, L.H.; Li, Y.F.; Li, M.C. Electrochemical effect of graphite fluoride modification on Li-rich cathode material in lithium ion battery. Ceram. Int. 2019, 45, 160–167. [Google Scholar] [CrossRef]
- Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X.G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. 2014, 7, 2504–2517. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Koo, B.R.; Ahn, H.J. Effect of Sb-doped SnO2-WO3 nanocomposite on electrochromic performance. Ceram. Int. 2019, 45, 15990–15995. [Google Scholar] [CrossRef]
- Pan, J.B.; Wang, Y.; Zheng, R.Z.; Wang, M.T.; Wan, Z.Q.; Jia, C.Y.; Weng, X.L.; Xie, J.L.; Deng, L.J. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. J. Mater. Chem. A 2019, 7, 13956–13967. [Google Scholar] [CrossRef]
- Hua, C.Z.; Yuan, G.Z.; Cheng, Z.Q.; Jiang, H.; Xu, G.; Liu, Y.; Han, G.R. Building architecture of TiO2 nanocrystals embedded in amorphous WO3 films with improved electrochromic properties. Electrochim. Acta 2019, 309, 354–361. [Google Scholar] [CrossRef]
- Zheng, H.D.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Dong, P.Y.; Hou, G.H.; Xi, X.U.; Shao, R.; Dong, F. WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications. Environ. Sci. Nano 2017, 4, 539–557. [Google Scholar] [CrossRef]
- Valyukh, I.; Green, S.V.; Granqvist, C.G.; Niklasson, G.A.; Valyukh, S.; Arwin, H. Optical properties of thin films of mixed Ni-W oxide made by reactive DC magnetron sputtering. Thin Solid Films 2011, 519, 2914–2918. [Google Scholar] [CrossRef] [Green Version]
- Stanishevsky, A.V.; Wetuski, J.D.; Yockell-Lelievre, H. Crystallization and stability of electrospun ribbon- and cylinder-shaped tungsten oxide nanofibers. Ceram. Int. 2016, 42, 388–395. [Google Scholar] [CrossRef]
- Nunez, O.R.; Tarango, A.J.M.; Murphy, N.R.; Phinney, L.C.; Hossain, K.; Ramana, C.V. Physical characterization of sputter-deposited amorphous tungsten oxynitride thin films. Thin Solid Films 2015, 596, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Chen, C.H.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Gaurav, M.; Satyendra, M.; Jignesh, G.H.; Ramesh, G. Surface modification of sputter deposited γ-WO3 thin film for scaled electrochromic behaviour. Surf. Coat. Technol. 2019, 375, 708–714. [Google Scholar]
- Madhavi, V.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Physica B 2014, 454, 141–147. [Google Scholar] [CrossRef]
- Mong, D.M.; Wang, W.W.; Dong, G.B.; Zhang, F.; He, Y.C.; Yu, H.; Liu, F.M.; Wang, M.; Xiao, X.G. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering. Appl. Surf. Sci. 2016, 383, 49–56. [Google Scholar]
- Liang, Y.C.; Chang, C.W. Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability. Coatings 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Man, W.K.; Guo, M.; Zhang, M.; Zhen, Q. Effects of morphology, size and crystallinity on the electrochromic properties of nanostructured WO3 films. CrystEngComm 2015, 17, 5440–5450. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Berggren, L.; Larsson, A.L. Electrochromic tungsten oxide: The role of defects. Sol. Energy Mater. Sol. C 2004, 84, 315–328. [Google Scholar] [CrossRef]
- Kim, H.; Choi, D.; Kim, K.; Chu, W.; Chun, D.M.; Lee, C.S. Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films. Sol. Energy Mater. Sol. C 2018, 177, 44–50. [Google Scholar] [CrossRef]
- Kawar, R.K.; Chigare, P.S.; Patil, P.S. Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films. Appl. Surf. Sci. 2003, 206, 90–101. [Google Scholar] [CrossRef]
- Xu, X.L.; Yazdi, M.A.P.; Rauch, J.Y.; Salut, R.; Bilard, A.; Potin, V.; Martin, N. Tungsten oxide thin films sputter deposited by the reactive gas pulsing process for the dodecane detection. Mater. Today Proc 2015, 2, 4656–4663. [Google Scholar] [CrossRef]
- Subrahmanyam, A.; Karuppasamy, A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol. Energy Mater. Sol. C 2007, 91, 266–274. [Google Scholar] [CrossRef]
- Sun, X.L.; Liu, Z.M.; Cao, H.T. Electrochromic properties of N-doped tungsten oxide thin films prepared by reactive DC-pulsed sputtering. Thin Solid Films 2011, 519, 3032–3036. [Google Scholar] [CrossRef]
- Ghosh, K.; Roy, A.; Tripathi, S.; Ghule, S.; Singh, A.K.; Ravishankar, N. Insights into nucleation, growth and phase selection of WO3: Morphology control and electrochromic properties. J. Mater. Chem. A 2017, 5, 7307–7316. [Google Scholar] [CrossRef]
- Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P. Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments. Solid State Ion. 2007, 178, 259–263. [Google Scholar] [CrossRef]
- Wen, R.T.; Granqvist, C.G.; Niklasson, G.A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 2015, 14, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Babu, M.B.; Madhuri, K.V. Synthesis and electrochromic properties of nanocrystalline WO3 thin films. Physica B 2020, 584, 68–75. [Google Scholar] [CrossRef]
- Martin, L.W.; Chu, Y.H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R 2010, 68, 111–133. [Google Scholar] [CrossRef] [Green Version]
- Kharade, R.R.; Mali, S.S.; Patil, S.P.; Patil, K.R.; Gang, M.G.; Patil, P.S.; Kim, J.H.; Bhosale, P.N. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films. Electrochim. Acta 2013, 102, 358–368. [Google Scholar] [CrossRef]
- Rauh, R.D.; Wang, F.; Reynolds, J.R.; Meeker, D.L. High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta 2001, 46, 13–14. [Google Scholar] [CrossRef]
- Zelays-Angel, O. Electrocoloration curve analysis in WO3 thin films. Mater. Sci. Eng. B Solid 2001, 86, 123–127. [Google Scholar] [CrossRef]
- Nagai, J.; Mcmeeking, G.D.; Saitoh, Y. Durability of electrochromic glazing. Sol. Energy Mater. Sol. C 1999, 56, 309–319. [Google Scholar] [CrossRef]
- Cai, G.F.; Darmawan, P.; Cui, M.Q.; Wang, J.X.; Chen, J.W.; Magdassi, S.; Lee, P.S. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 2–8. [Google Scholar] [CrossRef]
- Sallard, S.; Brezesinski, T.; Smarsly, B.M. Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J. Phys. Chem. C 2007, 111, 7200–7206. [Google Scholar] [CrossRef]
Substrate Temperatures (K) | Optical Modulation Range (%) | Response Time (s) | Coloration Efficiency (cm2/C) | |||
---|---|---|---|---|---|---|
550 nm | 630 nm | tb | tc | 550 nm | 630 nm | |
300 | 70.6 | 75.3 | 6.3 | 13.5 | 32.9 | 47.4 |
473 | 72.1 | 78.4 | 4.4 | 11.0 | 37.9 | 52.4 |
573 | 73.1 | 79.9 | 3.9 | 10.5 | 42.9 | 60.3 |
673 | 60.8 | 67.7 | 14.4 | 15.5 | 25.9 | 43.2 |
743 | 44.0 | 56.6 | 16.4 | 17.2 | 19.8 | 38.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.-j.; Wang, H.-l.; Su, Y.-f.; Tang, P.; Dai, M.-j.; Lin, H.-j.; Zhang, Z.-g.; Shi, Q. Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film. Coatings 2020, 10, 577. https://doi.org/10.3390/coatings10060577
Xia Z-j, Wang H-l, Su Y-f, Tang P, Dai M-j, Lin H-j, Zhang Z-g, Shi Q. Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film. Coatings. 2020; 10(6):577. https://doi.org/10.3390/coatings10060577
Chicago/Turabian StyleXia, Zhu-jie, Hong-li Wang, Yi-fan Su, Peng Tang, Ming-jiang Dai, Huai-jun Lin, Zhi-guo Zhang, and Qian Shi. 2020. "Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film" Coatings 10, no. 6: 577. https://doi.org/10.3390/coatings10060577
APA StyleXia, Z. -j., Wang, H. -l., Su, Y. -f., Tang, P., Dai, M. -j., Lin, H. -j., Zhang, Z. -g., & Shi, Q. (2020). Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film. Coatings, 10(6), 577. https://doi.org/10.3390/coatings10060577