Study on the Nondestructive Measurement of Aluminized Thickness Based on Radial Basis Function Neural Network by X-ray Fluorescence
Abstract
:1. Introduction
2. Materials and Models
2.1. Materials
2.2. Experimental Schemes and Testing Methods
2.3. Calculation Model
2.3.1. Model Simplification and Measurement Principles
2.3.2. Principal Component Analysis (PCA)
2.3.3. Radial Basis Function (RBF) Neural Network
2.3.4. Experimental Data
3. Results and Discussion
3.1. Calculation Model of Radial Basis Function (RBF) Neural Network
3.2. Calculation Model of the PCA-RBF Neural Network
3.2.1. Select Variables via Principal Component Analysis
3.2.2. Establish PCA-RBF Calculation Model
3.3. Comparative Study on the Two Models
4. Conclusions
- (1)
- Both RBF and PCA-RBF models can realize the measurement of the aluminized thickness under suitable expansion speed. The optimal average relative error of the predicted results is 6.1% and 3.99% respectively, which shows that the PCA-RBF model can obtain better predicted results in the calculation of aluminized thickness.
- (2)
- The relative error of the predicted results of different aluminized thicknesses displayed by the PCA-RBF model is more uniform and does not fluctuate greatly, which means that PCA-RBF model has better stability.
- (3)
- The change rule of the predicted results in the PCA-RBF model is more significantly consistent with the change rule of the training values, and the PCA-RBF model can better reflect the change rule of the aluminized thickness with the relative intensity.
Author Contributions
Funding
Conflicts of Interest
References
- Heilmaier, M.; Leetz, U.; Reppich, R. Order strengthening in the cast nickel-based superalloy IN 100 at room temperature. Mater. Sci. Eng. 2011, A319–321, 375–378. [Google Scholar] [CrossRef]
- Miller, M.K. Contributions of atom probe tomography to the understanding of nickel-based superalloys. Micron 2011, 32, 757–764. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, C.; Zhang, P.Y.; Chai, Y.; Dai, P.L.; Li, Q.L. Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy. Chin. Surf. Eng. 2018, 31, 26–31. [Google Scholar]
- Ji, A. Development of X-ray fluorescence spectrometry in the 30 years. Rock Miner. Anal. 2012, 31, 383–398. [Google Scholar]
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and researches on nondestructive testing: A review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Jain, S.K.; Gupta, P.P.; Rao, S.M. XRF technique for the measurement of nickel coating thickness in the range of a few hundred angstroms. In Proceedings of the Material Science Symposium, Rourkela, India, 24–26 October 1977. [Google Scholar]
- Kataoka, Y.; Kohno, H.; Furusawa, E.; Mantler, M. XRF analysis of Zn–Fe alloy coatings by using measurements at two take-off angles. X-Ray Spectrom. 2007, 36, 221–225. [Google Scholar] [CrossRef]
- Fiorini, C.; Gianoncelli, A.; Longoni, A.; Zaraga, F. Determination of the thickness of coatings by means of a new XRF spectrometer. X-Ray Spectrom. 2002, 31, 92–99. [Google Scholar] [CrossRef]
- Nygard, K.; Hamalainen, K.; Manninen, S.; Jalas, P.; Ruottinen, J.P. Quantitative thickness determination using x-ray fluorescence: Application to multiple layers. X-Ray Spectrom. 2004, 33, 354–359. [Google Scholar] [CrossRef]
- Al-Merey, R.; Karajou, J.; Issa, H. X-ray fluorescence analysis of geological samples: Exploring the effect of sample thickness on the accuracy of results. Appl. Radiat. Isot. 2005, 62, 501–508. [Google Scholar] [CrossRef]
- Rolin, T.D.; Leszczuk, Y. X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition; NASA: Washington, DC, USA, 2008. [Google Scholar]
- Cao, L.G.; Ding, Y.M.; Ao, Q. Thin-layer thickness gauging based on X-ray flourecence absorption method. Nucl. Tech. 1989, 12, 580–586. [Google Scholar]
- Mashin, N.I.; Leont’eva, A.A.; Tumanova, A.N. X-ray fluorescence method for determining the thickness of an aluminum coating on steel. J. Appl. Spectrosc. 2011, 78, 427–432. [Google Scholar] [CrossRef]
- Trojek, T.; Musílek, L.; Prokeš, R. Depth of layers in historical materials measurable by X-ray fluorescence analysis. Radiat. Phys. Chem. 2019, 155, 239–243. [Google Scholar] [CrossRef]
- Giurlani, W.; Innocenti, M.; Lavacchi, A. X-ray Microanalysis of Precious Metal Thin Films: Thickness and Composition Determination. Coatings 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.; Melquiades, F.L.; Appoloni, C.R.; Rizzutto, M.A.; Silva, T.F. Thickness determination of gold layer on pre-Columbian objects and a gilding frame, combining XRF and PLS regression. X-Ray Spectrom. 2016, 45, 344–351. [Google Scholar] [CrossRef]
- Guilherme, A.; Lisboa, N.; Paulo, S.P.; Dos Santos, F.R.; Luiz Melquiades, F. Determination of metal content in industrial powder ink and paint thickness over steel plates using X-Ray Fluorescence. Appl. Radiat. Isot. 2019, 150, 168–174. [Google Scholar]
- Wan, C.Y.; Hou, F.; Zhou, K.; Wang, J.C.; Tao, J.; Zhang, H.F.; Feng, D.R. Design of high precision X-ray thickness gauge system based on wavelet analysis. Ind. Instrum. Autom. 2019, 3, 113–117. [Google Scholar]
- Liu, B.; Li, A.H.; Wang, C.L.; Wang, J.B.; Ni, Y.T. SOM and RBF Networks for Eddy Current Nondestructive Testing. Adv. Mater. Res. 2011, 219–220, 1093–1096. [Google Scholar] [CrossRef]
- Sun, X.Y.; Liu, D.H.; Li, A.H. The Use of RBF Based on Fisher Ratio for Eddy Current Nondestructive Detecting System. In Proceedings of the Third International Conference on Natural Computation, Haikou, China, 24–27 August 2007; Volume 1, pp. 334–337. [Google Scholar]
- Thatoi, D.; Guru, P.; Jena, P.K.; Choudhury, S.; Chandra Das, H. Comparison of CFBP, FFBP, and RBF Networks in the Field of Crack Detection. Model. Simul. Eng. 2014, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Shi, T.L.; Liu, Z.P.; Zhou, H.D.; Du, L.; Liao, G.L. Nondestructive diagnosis of flip chips based on vibration analysis using PCA-RBF. Mech. Syst. Signal Process. 2017, 85, 849–856. [Google Scholar] [CrossRef]
- Editorial board of china aviation materials handbook. China Aviation Materials Handbook, 2nd ed.; Standards Press of China: Beijing, China, 2002; p. 9. [Google Scholar]
- Pearson, K. Principal components analysis. Edinb. Dublin Philos. Mag. J. 1901, 6, 566. [Google Scholar]
- Gao, X.P.; Chen, L.L.; Liu, Y.Z.; Sun, B.W. PCA-RBF neural network model-based urban water consumption prediction. Water Resour. Hydropower Eng. 2017, 48, 1–6. [Google Scholar]
Element | Ni | Cr | Co | Mo | Ti |
Content | Bal. | 10.1–12.1 | 4.4–6.1 | 3.8–4.4 | 2.1–2.6 |
Element | W | Fe | Al | C | Mn |
Content | 4.7–5.9 | <2.0 | 5.5–5.8 | 0.11–0.19 | <0.5 |
Number | Thickness/μm | Number | Thickness/μm | Number | Thickness/μm |
---|---|---|---|---|---|
1 | 0 | 11 | 38.1 | 21 | 41.7 |
2 | 20.2 | 12 | 38.3 | 22 | 41.8 |
3 | 24.4 | 13 | 38.9 | 23 | 42.3 |
4 | 25.1 | 14 | 39.0 | 24 | 42.7 |
5 | 25.3 | 15 | 39.6 | 25 | 42.9 |
6 | 27.6 | 16 | 40.2 | 26 | 43.1 |
7 | 27.6 | 17 | 40.3 | 27 | 43.2 |
8 | 28.4 | 18 | 40.5 | 28 | 43.5 |
9 | 29.8 | 19 | 40.8 | 29 | 44.1 |
10 | 37.3 | 20 | 41.2 | 30 | 45.2 |
Thickness/μm | Cr | Ti | Co | Ni | Mo |
---|---|---|---|---|---|
0 | 624.7071 | 101.7332 | 309.4308 | 3765.884 | 38.53389 |
20.2 | 293.2677 | 47.96101 | 247.7351 | 3328.567 | 31.47411 |
24.4 | 297.5915 | 50.81117 | 262.224 | 3617.338 | 33.55606 |
25.1 | 263.0195 | 36.00701 | 247.1321 | 3381.207 | 32.12911 |
25.3 | 256.054 | 31.49028 | 217.7013 | 3000.038 | 30.03988 |
27.6 | 268.4416 | 29.79269 | 245.2438 | 3393.103 | 31.61946 |
27.6 | 227.5506 | 24.98131 | 208.443 | 2861.764 | 25.9218 |
28.4 | 238.6764 | 33.34391 | 222.3146 | 3103.322 | 29.10874 |
29.8 | 323.5831 | 53.58238 | 267.939 | 3651.129 | 35.29104 |
37.3 | 232.7834 | 50.01579 | 201.5398 | 2743.924 | 22.80447 |
38.1 | 270.6113 | 62.20418 | 238.2002 | 3150.548 | 27.85035 |
38.3 | 270.5394 | 60.28608 | 237.3122 | 3227.51 | 27.69389 |
38.9 | 278.973 | 59.39031 | 250.7445 | 3450.395 | 29.78455 |
39.0 | 261.4657 | 55.15724 | 217.6103 | 2990.993 | 28.28293 |
39.6 | 275.6828 | 75.85441 | 248.3237 | 3324.763 | 30.55129 |
40.2 | 261.0089 | 63.6314 | 210.2344 | 2660.022 | 25.14679 |
40.3 | 234.8192 | 63.61527 | 216.6794 | 2999.977 | 24.51302 |
40.5 | 247.4827 | 57.6592 | 228.2574 | 3020.608 | 27.08641 |
40.8 | 247.1819 | 60.17707 | 220.9751 | 2931.231 | 26.48152 |
41.2 | 230.7498 | 52.91202 | 203.0792 | 2761.33 | 23.36633 |
41.7 | 229.006 | 62.00185 | 213.7183 | 2915.896 | 24.9006 |
41.8 | 246.9938 | 58.62607 | 233.5622 | 3114.483 | 24.4966 |
42.3 | 238.722 | 59.26103 | 216.2902 | 2935.454 | 24.22472 |
42.7 | 257.2055 | 71.8453 | 236.8516 | 3256.075 | 29.52851 |
42.9 | 227.9333 | 54.65655 | 214.5674 | 2895.517 | 24.30659 |
43.1 | 321.5272 | 77.55881 | 285.6264 | 3936.336 | 34.22172 |
43.2 | 291.9116 | 61.20275 | 248.7034 | 3380.121 | 30.026 |
43.5 | 236.8401 | 55.62551 | 208.4275 | 2740.238 | 24.70673 |
44.1 | 241.2549 | 63.69221 | 238.3664 | 3220.682 | 30.92202 |
45.2 | 219.665 | 55.43128 | 198.6655 | 2720.106 | 23.9862 |
Thickness/μm | RCr | RTi | RCo | RNi | RMo |
0 | 1 | 1 | 1 | 1 | 1 |
20.2 | 0.469448374 | 0.471439012 | 0.80061547 | 0.883873917 | 0.816790258 |
24.4 | 0.47636969 | 0.499454996 | 0.847439668 | 0.960554915 | 0.870819206 |
25.1 | 0.421028497 | 0.353935581 | 0.798666827 | 0.897852001 | 0.833788169 |
25.3 | 0.409878506 | 0.3095378 | 0.703553995 | 0.796635658 | 0.779570205 |
27.6 | 0.42970792 | 0.292851155 | 0.792564147 | 0.901010959 | 0.820562283 |
27.6 | 0.36425163 | 0.245557055 | 0.67363368 | 0.759918267 | 0.672701157 |
28.4 | 0.38206133 | 0.327758302 | 0.718462999 | 0.824062056 | 0.755405994 |
29.8 | 0.517975672 | 0.526694901 | 0.865909188 | 0.969527603 | 0.915843989 |
37.3 | 0.372628133 | 0.491636709 | 0.651324312 | 0.728626781 | 0.591802982 |
38.1 | 0.433181145 | 0.611444039 | 0.76980114 | 0.83660248 | 0.722749467 |
38.3 | 0.433065986 | 0.592589837 | 0.766931182 | 0.857039248 | 0.718689052 |
38.9 | 0.446566011 | 0.583784767 | 0.810341119 | 0.916224527 | 0.772944185 |
39.0 | 0.418541263 | 0.542175268 | 0.703259962 | 0.794233887 | 0.73397539 |
39.6 | 0.441299246 | 0.745620803 | 0.802517563 | 0.882863924 | 0.792841963 |
40.2 | 0.417810061 | 0.62547314 | 0.679422881 | 0.706347332 | 0.652588835 |
40.3 | 0.375886939 | 0.625314572 | 0.700251508 | 0.796619615 | 0.63614171 |
40.5 | 0.39615791 | 0.56676854 | 0.737668524 | 0.802097869 | 0.702924365 |
40.8 | 0.395676447 | 0.591518261 | 0.714133972 | 0.778364681 | 0.687226785 |
41.2 | 0.369372702 | 0.520105558 | 0.656299319 | 0.733248801 | 0.606383783 |
41.7 | 0.366581341 | 0.609455175 | 0.690681818 | 0.774292624 | 0.646199799 |
41.8 | 0.395375408 | 0.576272596 | 0.754812263 | 0.827025614 | 0.635715711 |
42.3 | 0.382134229 | 0.582513946 | 0.698993739 | 0.779485939 | 0.628660076 |
42.7 | 0.411721713 | 0.706212652 | 0.765442657 | 0.864624308 | 0.766299713 |
42.9 | 0.364864287 | 0.537253654 | 0.693426036 | 0.768881066 | 0.63078466 |
43.1 | 0.514684677 | 0.76237441 | 0.923070352 | 1.045262089 | 0.888093857 |
43.2 | 0.467277513 | 0.601600411 | 0.803744824 | 0.897563708 | 0.779210018 |
43.5 | 0.379121801 | 0.546778147 | 0.673583552 | 0.72764808 | 0.64116888 |
44.1 | 0.386188746 | 0.626070793 | 0.770338106 | 0.855225991 | 0.802462807 |
45.2 | 0.351628709 | 0.544868937 | 0.642035216 | 0.722302044 | 0.622470114 |
Spread | Actual Thickness/μm | Predictive Thickness/μm | Relative Error/% | Average Relative Error/% |
---|---|---|---|---|
0.1 | 25.1 | 23.17 | 7.69 | 6.10 |
38.1 | 37.36 | 1.94 | ||
43.2 | 39.45 | 8.68 | ||
0.03 | 25.1 | 1.24 | 95.06 | 67.88 |
38.1 | 20.91 | 45.12 | ||
43.2 | 15.78 | 63.47 |
Thickness/μm | F1 | F2 | Thickness/μm | F1 | F2 |
---|---|---|---|---|---|
0 | 2.2002 | −0.3607 | 40.2 | 1.3888 | −0.1006 |
20.2 | 1.5659 | 0.1044 | 40.3 | 1.4347 | −0.0276 |
24.4 | 1.6633 | 0.1249 | 40.5 | 1.4108 | −0.0631 |
25.1 | 1.5244 | 0.2261 | 40.8 | 1.2889 | −0.0431 |
25.3 | 1.3839 | 0.2086 | 41.2 | 1.3693 | −0.0887 |
27.6 | 1.5029 | 0.2713 | 41.7 | 1.4258 | −0.0501 |
27.6 | 1.3858 | 0.2013 | 41.8 | 1.4127 | −0.0658 |
28.4 | 1.7250 | 0.1115 | 42.3 | 1.3670 | −0.0737 |
29.8 | 1.2706 | −0.0268 | 42.7 | 1.5558 | −0.1063 |
37.3 | 1.5074 | −0.0343 | 42.9 | 1.3394 | −0.0339 |
38.1 | 1.5065 | −0.0546 | 43.1 | 1.8429 | −0.0691 |
38.3 | 1.5873 | 0.0103 | 43.2 | 1.5924 | −0.0140 |
38.9 | 1.4312 | 0.0072 | 43.5 | 1.3237 | −0.0560 |
39.0 | 1.6206 | −0.1289 | 44.1 | 1.5366 | −0.0215 |
39.6 | 1.3618 | −0.1342 | 45.2 | 1.2832 | −0.0585 |
Actual Thickness/μm | Predictive Thickness/μm | Relative Error/% | Average Relative Error/% |
---|---|---|---|
25.1 | 26.04 | 3.75 | 3.99 |
38.1 | 37.16 | 2.47 | |
43.2 | 45.69 | 5.76 |
Model | RBF | PCA-RBF | |
---|---|---|---|
Spread = 0.1 | Spread = 0.03 | Spread = 0.08 | |
Mean square error (MSE) | 0.0096 | 2.48 × 10−29 | 3.57 × 10−24 |
Average relative error/% | 6.1 | 67.88 | 3.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, C.; Zhang, P.; Gui, M.; Tong, L.; Li, B. Study on the Nondestructive Measurement of Aluminized Thickness Based on Radial Basis Function Neural Network by X-ray Fluorescence. Coatings 2020, 10, 754. https://doi.org/10.3390/coatings10080754
Liu J, Wang C, Zhang P, Gui M, Tong L, Li B. Study on the Nondestructive Measurement of Aluminized Thickness Based on Radial Basis Function Neural Network by X-ray Fluorescence. Coatings. 2020; 10(8):754. https://doi.org/10.3390/coatings10080754
Chicago/Turabian StyleLiu, Jichao, Cheng Wang, Peiyu Zhang, Min Gui, Lijia Tong, and Bin Li. 2020. "Study on the Nondestructive Measurement of Aluminized Thickness Based on Radial Basis Function Neural Network by X-ray Fluorescence" Coatings 10, no. 8: 754. https://doi.org/10.3390/coatings10080754
APA StyleLiu, J., Wang, C., Zhang, P., Gui, M., Tong, L., & Li, B. (2020). Study on the Nondestructive Measurement of Aluminized Thickness Based on Radial Basis Function Neural Network by X-ray Fluorescence. Coatings, 10(8), 754. https://doi.org/10.3390/coatings10080754