Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Plating Process
2.2. Structure and Morphology Analysis
2.3. Corrosion Resistance Test
2.4. Friction and Wear Test
3. Experimental Results and Analysis
3.1. Coating Composition and Morphology
3.2. Hardness of Composite Coating
3.3. Tribological Properties of Composite Coating
3.4. Corrosion Resistance of Composite Coatings
4. Conclusions
- The nano-ZrO2 particles with polarity affect the surface morphology of the coating and the crystal orientation of grain growth. The obtained pattern’s surface morphology is layered and deepened as a space structure with a regular pentagon or hexagonal structure;
- The existence of nano-ZrO2 particles and molybdenum element can refine the grains size and improve the deposition hardness. The deposited Ni-ZrO2 coating and Ni-Mo-ZrO2 coating average grain size was small—14.3, 14.2 nm—and the hardness was high—614, 694 HV—respectively;
- Ni-Mo-ZrO2 composite coating has better tribological and corrosion resistance properties in comprehensive comparison with nickel, Ni-Mo and Ni-ZrO2 coatings under salt-water conditions. The friction coefficient of Ni-Mo-ZrO2 is lower under the same conditions. This is directly related to the porous structure and the polarity of nano-ZrO2 particles of the coating.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Chen, S.; Ma, X.; Liang, J.; Liu, C. Laser direct deposition Mo-Ni-ZrO2 composited alloy gradient coating. Acta Mater. Compos. Sin. 2017, 34, 1989–1996. [Google Scholar]
- Li, N.; Gao, C. Microstructure and electrochemical properties of the electrodeposited Ni-Mo/ZrO2 alloy coating. Mater. Sci. Technol. 2011, 19, 104–109. [Google Scholar]
- Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings. Appl. Surf. Sci. 2016, 369, 224–231. [Google Scholar] [CrossRef]
- Kim, Y. Preparation of Ni-ZrO2 composites via mechanochemistry processes and their catalytic properties. J. Ceram. Process. Res. 2016, 17, 905–909. [Google Scholar]
- Zhang, Y.; Ding, S.; Song, T.; Zhang, Y. Microwave dielectric properties of temperature stable MO-ZrO2-Ta2O5 ceramics. J. Alloys Compd. 2019, 798, 194–203. [Google Scholar] [CrossRef]
- Beltowska-Lehman, E.; Bigos, A.; Indyka, P.; Kot, M. Electrodeposition and characterisation of nanocrystalline Ni-Mo coatings. Surf. Coat. Technol. 2012, 211, 67–71. [Google Scholar] [CrossRef]
- Wasekar, N.P.; Bathini, L.; Sundararajan, G. Tribological behavior of pulsed electrodeposited Ni-W/SiC nanocomposites. J. Mater. Eng. Perform. 2018, 27, 5236–5245. [Google Scholar] [CrossRef]
- Huang, B.; Song, C.; Liu, Y.; Gui, Y. Microstructure characterization and wear-resistant properties evaluation of an intermetallic composite in Ni-Mo-Si system. Materials 2017, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Lou, X.; Jia, C. Porous Ni-Mo-Co Hydroxide nanoflakes on carbon cloth for supercapacitor application. J. Nanosci. Nanotechnol. 2019, 19, 272–276. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Y.N.; Lu, K. Thermal analysis of electrodeposited nano-grained Ni-Mo alloys. Scr. Mater. 2018, 154, 182–185. [Google Scholar] [CrossRef]
- Gubicza, J.; Pereira, P.H.R.; Kapoor, G.; Huang, Y.; Vadlamani, S.S.; Langdon, T.G. Annealing-induced hardening in ultrafine-grained Ni-Mo alloys. Adv. Eng. Mater. 2018, 20, 1800184. [Google Scholar] [CrossRef] [Green Version]
- Gui, Y.L.; Song, C.Y.; Yang, L.; Qin, X.L. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic “in-situ” composites. J. Alloys Compd. 2011, 509, 4987–4991. [Google Scholar]
- Cui, C.; Zhu, X.; Liu, S.; Li, Q.; Zhang, M.; Zhu, G.; Wei, S. Effect of nano-sized ZrO2 on high temperature performance of Mo-ZrO2 alloy. J. Alloys Compd. 2018, 768, 81–87. [Google Scholar] [CrossRef]
- Yun, S.U.; Guliants, V. Surface coverage effects on water gas shift activity of ZrO2 supported Mo sulfide catalysts. Catal. Commun. 2019, 138, 105810. [Google Scholar] [CrossRef]
- da Silva, F.C.; Tunes, M.A.; Edmondson, P.D.; Lima, N.B.; Sagás, J.C.; Fontana, L.C.; Schön, C.G. Grid-assisted magnetron sputtering deposition of nitrogen graded TiN thin films. Appl. Sci. 2020, 2, 865. [Google Scholar] [CrossRef] [Green Version]
- Tunes, M.A.; Vishnyakov, V.M.; Camara, O.; Greaves, G.; Edmondson, P.D.; Zhang, Y.; Donnelly, S.E. A candidate accident tolerant fuel system based on a highly concentrated alloy thin film. Mater. Today Energy 2019, 12, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Wasekar, N.P.; Verulkar, S.; Vamsi, M.V.N.; Sundararajan, G. Influence of molybdenum on the mechanical properties, electrochemical corrosion and wear behavior of electrodeposited Ni-Mo alloy. Surf. Coat. Technol. 2019, 370, 298–310. [Google Scholar] [CrossRef]
- Golgovici, F.; Pumnea, A.; Petica, A.; Manea, A.C.; Brincoveanu, O.; Enachescu, M.; Anicai, L. Ni-Mo alloy nanostructures as cathodic materials for hydrogen evolution reaction during seawater electrolysis. Chem. Pap. 2018, 72, 1889–1903. [Google Scholar] [CrossRef]
- Li, N.; Chen, W.; Lu, L.; Gao, C. Electrodeposition behavior of polycrystalline Ni-Mo-La composite in alkaline solution. Coatings 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Wijten, J.H.J.; Riemersma, R.L.; Gauthier, J.; Mandemaker, L.D.B.; Verhoeven, M.W.G.M.; Hofmann, J.P.; Chan, K.; Weckhuysen, B.M. Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction. ChemSusChem 2019, 12, 3491–3500. [Google Scholar] [CrossRef] [Green Version]
- Marlot, A.; Kern, P.; Landolt, D. Pulse plating of Ni-Mo alloys from Ni-rich electrolytes. Electrochim. Acta 2002, 48, 29–36. [Google Scholar] [CrossRef]
- Yagi, S.; Kawakami, A.; Murase, K.; Awakura, Y. Ni–Mo alloying of nickel surface by alternating pulsed electrolysis using molybdenum(VI) baths. Electrochim. Acta 2007, 52, 6041–6051. [Google Scholar] [CrossRef]
- Wasekar, N.P.; Haridoss, P.; Seshadri, S.K.; Sundararajan, G. Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surf. Coat. Technol. 2016, 291, 130–140. [Google Scholar] [CrossRef]
- Zhao, W.; Li, W.; Li, X.; Gong, S.; Vitos, L.; Sun, Z. Thermo-mechanical properties of Ni-Mo solid solutions: A first-principles study. Comput. Mater. Sci. 2019, 158, 140–148. [Google Scholar] [CrossRef]
- Rezaeiolum, A.; Aliofkhazraei, M.; Karimzadeh, A. Electrodeposition of Ni-Mo and Ni-Mo-(nano Al2O3) multilayer coatings. Surf. Eng. 2018, 34, 423–432. [Google Scholar] [CrossRef]
- Ahmad, Y.H.; Mohamed, A.M.A.; Golden, T.D.; Souza, N.D. Electrodeposition of nanocrystalline Ni-Mo alloys from alkaline glycinate solutions. Int. J. Electrochem. Sci. 2014, 9, 6438–6450. [Google Scholar]
- Uhlig, H.H.; Bond, P.; Feller, H. Corrosion and passivity of molybdenum-nickel alloys in hydrochloric acid. J. Electrochem. Soc. 1963, 110, 650–653. [Google Scholar] [CrossRef]
- Huang, P.C.; Hou, K.H.; Sheu, H.H.; Ger, M.D.; Wang, G.L. Wear properties of Ni–Mo coatings produced by pulse electroforming. Surf. Coat. Technol. 2014, 258, 639–645. [Google Scholar] [CrossRef]
- Vamsi, M.V.N.; Wasekar, N.P.; Sundararajan, G. Sliding wear of as-deposited and heat-treated nanocrystalline nickel-tungsten alloy coatings. Wear 2018, 412, 136–143. [Google Scholar] [CrossRef]
ZrO2 in Solution (g/L) | Mass Fraction of ZrO2 (%) | Microhardness (HV) | Average Crystalline Size (nm) | Wear Mass Loss (mg) | Steady Friction Coefficient | Corrosion Rate (mg/cm2 h) |
---|---|---|---|---|---|---|
4 (No Molybdate) | 3.68 | 614 | 14.3 | 8.5 | 0.102 | 0.066 |
0 | 0 | 535 | 18.3 | 15.6 | 0.30 | 0.052 |
2 | 1.24 | 596 | 17.1 | 6.2 | 0.21 | 0.064 |
4 | 3.96 | 653 | 16.7 | 3.5 | 0.136 | 0.04 |
8 | 6.54 | 694 | 14.2 | 2.6 | 0.124 | 0.035 |
16 | 8.17 | 662 | 18.5 | 4.3 | 0.142 | 0.072 |
20 | 8.12 | 621 | 20.2 | 10.1 | 0.33 | 0.108 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Xu, H.; Li, X.; Chen, W.; Zheng, L.; Lu, L. Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys. Coatings 2020, 10, 767. https://doi.org/10.3390/coatings10080767
Li N, Xu H, Li X, Chen W, Zheng L, Lu L. Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys. Coatings. 2020; 10(8):767. https://doi.org/10.3390/coatings10080767
Chicago/Turabian StyleLi, Ning, Hong Xu, Xinhui Li, Weizeng Chen, Lijuan Zheng, and Lirong Lu. 2020. "Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys" Coatings 10, no. 8: 767. https://doi.org/10.3390/coatings10080767
APA StyleLi, N., Xu, H., Li, X., Chen, W., Zheng, L., & Lu, L. (2020). Tribological Properties and Corrosion Resistance of Porous Structure Ni-Mo/ZrO2 Alloys. Coatings, 10(8), 767. https://doi.org/10.3390/coatings10080767