Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Characterizations
2.3. Electrochemical Measurements
2.4. Interfacial Contact Resistance (ICR) Measurements
2.5. Statistical Analysis
3. Results
3.1. Surface Morphology and Composition
3.2. XPS Surface Analysis
3.3. Surface Wettability
3.4. Electrochemical Measurements
3.5. Interfacial Contact Resistance Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PVD | Physical vapor deposition |
BPP | Bipolar plate |
PEMFC | Proton-exchange membrane fuel cell |
RF | Radio-frequency |
ICR | Interfacial contact resistance |
SS | Stainless steel |
TRD | Thermo-reactive diffusion |
PSDA | Plasma surface diffusion alloying |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
ESD | Energy-dispersive X-ray spectroscopy |
OCP | Open circuit potential |
US DOE | United States Department of Energy |
References
- Ruiz Gómez, E.E.; Mina Hernández, J.H.; Diosa Astaiza, J.E. Development of a Chitosan/PVA/TiO2 nanocomposite for application as a solid polymeric electrolyte in fuel cells. Polymers 2020, 12, 1691. [Google Scholar] [CrossRef] [PubMed]
- Khzouz, M.; Gkanas, E.I.; Shao, J.; Sher, F.; Beherskyi, D.; El-Kharouf, A.; Qubeissi, M.A. Life cycle costing analysis: Tools and applications for determining hydrogen production cost for fuel cell vehicle technology. Energies 2020, 13, 3783. [Google Scholar] [CrossRef]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New perspectives on fuel cell technology: A brief review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.; El-Kharouf, A. Titanium nitride polyaniline bilayer coating for metallic bipolar plates used in polymer electrolyte fuel cells. Fuel Cells 2020, in press. [Google Scholar] [CrossRef]
- Liu, L.; Yao, L.; Feng, K.; Luo, Z.; Liu, K.; Zhu, H.; Chu, P. In silico screening and design of coating materials for pemfc bipolar plates. Coatings 2018, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Jannat, S.; Rashtchi, H.; Atapour, M.; Golozar, M.A.; Elmkhah, H.; Zhiani, M. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. J. Power Sources 2019, 435, 226818–226828. [Google Scholar] [CrossRef]
- Caqué, N.; Paris, M.; Chatenet, M.; Rossinot, E.; Bousquet, R.; Claude, E. Characterization of uncoated stainless steel as proton exchange membrane fuel cell bipolar plates material. Fuel Cells 2012, 12, 248–255. [Google Scholar] [CrossRef]
- Kumar, N.; Shaik, G.P.; Pandurangan, S.; Khalkho, B.; Neelakantan, L.; Chetty, R. Corrosion characteristics and fuel cell performance of a cost-effective high Mn–Low Ni austenitic stainless steel as an alternative to SS 316L bipolar plate. Int. J. Energy Res. 2020, 44, 6804–6818. [Google Scholar] [CrossRef]
- Ingle, A.V.; Raja, V.S.; Rangarajan, J.; Mishra, P. Corrosion resistant quaternary Al–Cr–Mo–N coating on type 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 3094–3107. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Sun, J.; Lv, Y.; Li, S.; Ji, S.; Wen, Z. Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2012, 199, 195–200. [Google Scholar] [CrossRef]
- Pillis, M.F.; de Oliveira, M.C.L.; Antunes, R.A. Surface chemistry and the corrosion behavior of magnetron sputtered niobium oxide films in sulfuric acid solution. Appl. Surf. Sci. 2018, 462, 344–352. [Google Scholar] [CrossRef]
- Pan, T.J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C. Corrosion behavior of niobium coated 304 stainless steel in acid solution. Appl. Surf. Sci. 2016, 369, 320–325. [Google Scholar] [CrossRef]
- Pozio, A.; Silva, R.; Masci, A. Corrosion study of SS430/Nb as bipolar plate materials for PEMFCs. Int. J. Hydrogen Energy 2008, 33, 5697–5702. [Google Scholar] [CrossRef]
- Weil, K.S.; Xia, G.; Yang, Z.G.; Kim, J.Y. Development of a niobium clad PEM fuel cell bipolar plate material. Int. J. Hydrogen Energy 2007, 32, 3724–3733. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; You, Y.; Kim, D.; Hong, S.; Suh, H.; Weil, K.S. Niobium sputter coated stainless steel as a bipolar plate material for polymer electrolyte membrane fuel cell stacks. Int. J. Electrochem. Sci. 2011, 6, 4365–4377. [Google Scholar]
- Dadfar, M.; Salehi, M.; Golozar, M.; Trasatti, S. Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. Int. J. Hydrogen Energy 2016, 41, 21375–21384. [Google Scholar] [CrossRef]
- Liang, C.H.; Cao, C.H.; Huang, N.B. Electrochemical behavior of 304 stainless steel with electrodeposited niobium as PEMFC bipolar plates. Int. J. Miner. Metall. Mater. 2012, 19, 328–332. [Google Scholar] [CrossRef]
- Cui, Y.; Cui, J.; Xu, X.; Cheng, F.; Wang, L.; Li, S.; Ji, S.; Sun, J. Electrochemical properties of niobium modified AISI316L stainless steel bipolar plates for direct formic acid fuel cell. Fuel Cells 2017, 17, 698–707. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Dong, H.; Gu, D. Multistep active screen plasma co-alloying the treatment of metallic bipolar plates. Surf. Eng. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Cha, B.C.; You, Y.Z.; Hong, S.T.; Kim, J.H.; Kim, D.W.; Lee, B.S.; Kim, S.K. Nitride films as protective layers for metallic bipolar plates of polymer electrolyte membrane fuel cell stacks. Int. J. Hydrogen Energy 2011, 36, 4565–4572. [Google Scholar] [CrossRef]
- Feng, K.; Li, Z.; Cai, X.; Chu, P.K. Corrosion behavior and electrical conductivity of niobium implanted 316L stainless steel used as bipolar plates in polymer electrolyte membrane fuel cells. Surf. Coat. Technol. 2010, 205, 85–91. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Tian, L.; Dong, H. Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2015, 40, 10281–10292. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Bidaye, A.; Suri, A. Magnetron sputtered NbN films with Nb interlayer on mild steel. Int. J. Corr. 2011, 748168. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, R.M.; Soares, R.B.; Carvalho, R.G.; Tentardini, E.K.; Lins, V.F.C.; Castro, M.M.R. Corrosion behavior of magnetron sputtered NbN and Nb1−xAlxN coatings on AISI 316L stainless steel. Surf. Coat. Technol. 2019, 378, 124987. [Google Scholar] [CrossRef]
- Shi, K.; Li, X.; Zhao, Y.; Li, W.W.; Wang, S.B.; Xie, X.F.; Yao, L.; Jensen, J.O.; Li, Q.F. Corrosion behavior and conductivity of TiNb and TiNbN coated steel for metallic bipolar plates. Appl. Sci. 2019, 9, 2568. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Ming, P.; Yang, D.; Zhang, C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451, 227783. [Google Scholar] [CrossRef]
- Caicedo, J.C.; Amaya, C.; Cabrera, G.; Esteve, J.; Aperador, W.; Gómez, M.E.; Prieto, P. Corrosion surface protection by using titanium carbon nitride/titanium–niobium carbon nitride multilayered system. Thin Solid Film. 2011, 519, 6362–6368. [Google Scholar] [CrossRef]
- Swann, S. Magnetron sputtering. Phys. Technol. 1988, 19, 67. [Google Scholar] [CrossRef]
- Jun, S.; Kim, J.; Kim, S.; You, Y.; Cha, B. Characteristics of NbN films deposited on AISI 304 using inductively coupled plasma assisted DC magnetron sputtering method. J. Kor. Inst. Surf. Eng. 2013, 46, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Surmeneva, M.A.; Surmenev, R.A. Microstructure characterization and corrosion behaviour of a nano-hydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering. Vacuum 2015, 117, 60–62. [Google Scholar] [CrossRef]
- Kazmanli, M.K.; Ürgen, M.; Cakir, A.F. Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD. Surf. Coat. Technol. 2003, 167, 77–82. [Google Scholar] [CrossRef]
- Xu, J.; Umehara, H.; Kojima, I. Effect of deposition parameters on composition, structures, density and topography of CrN films deposited by r.f. magnetron sputtering. Appl. Surf. Sci. 2002, 201, 208–218. [Google Scholar] [CrossRef]
- Liang, S.; Chang, Z.; Tsai, D.; Lin, Y.; Sung, H.; Deng, M.; Shieu, F. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf) N coatings. Appl. Surf. Sci. 2011, 257, 7709–7713. [Google Scholar] [CrossRef]
- Nordin, M.; Larsson, M.; Hogmark, S. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coat. Technol. 1998, 106, 234–241. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Darlinski, A.; Halbritter, J. Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces. Surf. Interface Anal. 1987, 10, 223–237. [Google Scholar] [CrossRef]
- Jouve, G.; Séverac, C.; Cantacuzene, S. XPS study of NbN and (NbTi)N superconducting coatings. Thin Solid Film. 1996, 287, 146–153. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Prakash, M.S.; Poojari, A.; Rajam, K. Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process. Thin Solid Film. 2004, 460, 133–142. [Google Scholar] [CrossRef]
- Cui, J.; Jing, B.; Xu, X.; Wang, L.; Cheng, F.; Li, S.; Wen, Z.; Ji, S.; Sun, J. Performance of niobium nitride-modified AISI316L stainless steel as bipolar plates for direct formic acid fuel cells. Int. J. Hydrogen Energy 2017, 42, 11830–11837. [Google Scholar] [CrossRef]
- Brady, M.P.; Wang, H.; Turner, J.A.; Meyer, H.M.; More, K.L.; Tortorelli, P.F.; McCarthy, B.D. Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure. J. Power Sources 2010, 195, 5610–5618. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Kang, B.; Li, S.; Ji, S.; Wen, Z.; Wang, X. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate. J. Power Sources 2014, 246, 775–782. [Google Scholar] [CrossRef]
- Davies, D.; Adcock, P.; Turpin, M.; Rowen, S. Bipolar plate materials for solid polymer fuel cells. J. Appl. Electrochem. 2000, 30, 101–105. [Google Scholar] [CrossRef]
- Menon, C.; Pankajakshan, V. Electrical conductivity and transition temperature of NbN thin films. Bull. Mater. Sci. 1987, 9, 187–191. [Google Scholar] [CrossRef]
- Garzon-Fontecha, A.; Castillo, H.A.; Escobar-Rincón, D.; Restrepo-Parra, E.; de la Cruz, W. correlation between stoichiometry of NbxNy coatings produced by DC magnetron sputtering with electrical conductivity and the Hall Coefficient. Coatings 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Dadfar, M.; Salehi, M.; Golozar, M.A.; Trasatti, S.; Casaletto, M.P. Surface and corrosion properties of modified passive layer on 304 stainless steel as bipolar plates for PEMFCs. Int. J. Hydrogen Energy 2017, 42, 25869–25876. [Google Scholar] [CrossRef]
- Kraytsberg, A.; Auinat, M.; Ein-Eli, Y. Reduced contact resistance of PEM fuel cell’s bipolar plates via surface texturing. J. Power Sources 2007, 164, 697–703. [Google Scholar] [CrossRef]
- Av asarala, B.; Haldar, P. Effect of surface roughness of composite bipolar plates on the contact resistance of a proton exchange membrane fuel cell. J. Power Sources 2009, 188, 225–229. [Google Scholar] [CrossRef]
Target | Nb |
---|---|
Substrate | 304 SS |
RF Power (W) | 150 |
DC Self Bias (V) | 200 |
Gas composition | 20% N2/Ar (or pure Ar) |
Deposition Time | 2 h for Nb and 4 h for NbN |
Substrate temperature (°C) | 25 and 350 |
Pressure (Pa) | 3 |
Nb-HT | One layer of Nb coating, deposited at 350 °C and 3 Pa of pure Ar for 2 h |
NbN-RT | One layer of NbN coating, deposited at 25 °C and 3 Pa of 20%N2/Ar for 4 h |
NbN-HT | One layer of NbN coating, treated in 350 °C and 3 Pa of 20%N2/Ar for 4 h |
Nb/NbN-HT | Two layers consisting of Nb (deposited at 350 °C for 2 h and pressure of 3 Pa of pure Ar) and NbN (deposited at 350 °C for 4 h and pressure of 3 Pa of 20%N2/Ar) |
Coating | Coating Thickness (μm) | Roughness (μm) |
---|---|---|
Nb-HT | 0.75 ± 0.05 | 0.011 ± 0.001 |
NbN-RT | 1.11 ± 0.04 | 0.029 ± 0.005 |
NbN-HT | 1.13 ± 0.01 | 0.05 ± 0.01 |
Nb/NbN-HT | 1.8 ± 0.1 | 0.04 ± 0.01 |
Sample | Nb 3d | N 1s | O 1s | Si 2p | N/Nb | O/Nb |
---|---|---|---|---|---|---|
NbN-RT | 33.2 | 14.6 | 46.3 | 5.9 | 0.44 | 1.39 |
NbN-HT | 28.1 | 18.7 | 38.1 | 15.1 | 0.66 | 1.36 |
Nb/NbN-HT | 27.5 | 16.9 | 39.3 | 16.3 | 0.61 | 1.43 |
Nb 3d5/2 BE Assignment | 204.7–205.1 eV NbNx and/or NbO | 206.2 eV NbNxOy | 207.8 eV Nb2O5 |
---|---|---|---|
NbN-RT | 21.8 | 12.1 | 66.1 |
NbN-HT | 29.6 | 14.8 | 56.3 |
Nb/NbN-HT | 36.8 | 15.4 | – |
N 1s BE Assignment | 396.6 eV NbN | 397.6 eV NbN/Si-N | 399.8–400.4 eV NbNxOy |
---|---|---|---|
NbN-RT | 58.6 | 12.2 | 29.3 |
NbN-HT | 56.8 | 13.6 | 29.6 |
Nb/NbN-HT | – | 79.1 | 20.9 |
O 1s BE Assignment | 530.6 eV O2− ions as in NbO | 531.7 eV Nb2O5 | 532.7399.8–400.4 eV SiO2 |
---|---|---|---|
NbN-RT | 72.4 | 27.6 | – |
NbN-HT | 59.2 | 40.8 | – |
Nb/NbN-HT | 45.2 | – | 54.8 |
Sample | Ecorr vs. Ag/AgCl (mV) | icorr (μA/cm2) |
---|---|---|
304 SS | −377 ± 45 | 80 ± 12 |
Nb-HT | −200 ± 23 | 0.045 ± 0.002 |
NbN-HT | −231 ± 20 | 0.5 ±0.01 |
NbN-RT | −175 ± 15 | 1.5 ±0.05 |
Nb/NbN-HT | −281 ± 10 | 0.7 ± 0.1 |
Sample | i + 644 mV vs. Ag/AgCl (μA/cm2) | i − 56 mV vs. Ag/AgCl (μA/cm2) |
---|---|---|
304 SS | 60.2 ± 12 | 60.5 ± 15 |
Nb-HT | 4.2 ± 0.8 | 0.4 ± 0.1 |
NbN-RT | 29.8 ± 4 | 5.5 ± 0.7 |
NbN-HT | 27.3 ± 5 | 2.5 ± 0.5 |
Nb/NbN-HT | 20.1 ± 3 | 3.0 ± 0.6 |
Sample Specimen | i + 644 mV vs. Ag/AgCl (μAICR in 140 N/cm2 (mΩ·cm2) | i − 56 mV vs. Ag/AgCl (μA/cm2) |
---|---|---|
304 SS | 60.2 ± 12 | 60.5 ± 15 |
Nb-HT | 4.2 ± 0.8 | 0.4 ± 0.1 |
NbN-RT | 29.8 ± 4 | 5.5 ± 0.7 |
NbN-HT | 27.3 ± 5 | 2.5 ± 0.5 |
Nb/NbN-HT | 20.1 ± 3 | 3.0 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atapour, M.; Rajaei, V.; Trasatti, S.; Casaletto, M.P.; Chiarello, G.L. Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs. Coatings 2020, 10, 889. https://doi.org/10.3390/coatings10090889
Atapour M, Rajaei V, Trasatti S, Casaletto MP, Chiarello GL. Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs. Coatings. 2020; 10(9):889. https://doi.org/10.3390/coatings10090889
Chicago/Turabian StyleAtapour, Masoud, Vahid Rajaei, Stefano Trasatti, Maria Pia Casaletto, and Gian Luca Chiarello. 2020. "Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs" Coatings 10, no. 9: 889. https://doi.org/10.3390/coatings10090889
APA StyleAtapour, M., Rajaei, V., Trasatti, S., Casaletto, M. P., & Chiarello, G. L. (2020). Thin Niobium and Niobium Nitride PVD Coatings on AISI 304 Stainless Steel as Bipolar Plates for PEMFCs. Coatings, 10(9), 889. https://doi.org/10.3390/coatings10090889