Research Progress of Graphene-Based Materials on Flexible Supercapacitors
Abstract
:1. Introduction
2. Flexible Supercapacitors
3. GQDs
3.1. Preparation of GQDs
3.2. GQDs Flexible Supercapacitors
3.2.1. Electrodeposited GQDs for Flexible Electrode Materials
3.2.2. GQDs for the Modification of Flexible Electrode Materials
4. GFbs
4.1. Fiber Supercapacitors
4.2. GFbs Flexible Supercapacitors
4.2.1. New Strategies for Preparing GFbs
4.2.2. Composite GFbs
5. GFs
5.1. Problems in Preparing GFs
5.2. GFs Flexible Supercapacitors
5.2.1. Porous/Embedded GFs
5.2.2. Doped GFs
6. Graphene Gels
6.1. Problems of Graphene Gels Used in Flexible Electrodes
6.2. GHs Flexible Supercapacitors
6.3. GAs Flexible Supercapacitors
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Vagin, M.; Crispin, X. Can hybrid Na–Air batteries outperform nonaqueous Na–O2 batteries? Adv. Sci. 2020, 7, 1902866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A Review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, Z.; Wang, S.; Xiao, H.; Zhou, F.; Sun, C.; Cheng, H. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 2017, 6, 70–97. [Google Scholar] [CrossRef]
- Dai, S.; Liu, Z.; Zhao, B.; Zeng, J.; Hu, H.; Zhang, Q.; Liu, M. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 2018, 387, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kannappan, S.; Pandian, A.S.; Jang, J.; Lee, Y.; Lu, W. Graphene supercapacitor with both high power and energy density. Nanotechnology 2017, 28, 445401. [Google Scholar] [CrossRef]
- Yoo, J.J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Ajayan, P.M. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427. [Google Scholar] [CrossRef]
- Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. [Google Scholar] [CrossRef]
- Cossutta, M.; Vretenar, V.; Centeno, T.A.; Kotrusz, P.; Mckechnie, J.; Pickering, S.J. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 2020, 242, 118468. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, C.; Ma, C.; Li, G.H.; Wang, Y.; Zhang, K.; Ren, W. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Han, T.Y.; Duoss, E.B.; Kuntz, J.D.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, S.; Wu, Z.; Bao, X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 2018, 27, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Kaur, I. Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. RSC Adv. 2016, 6, 78702–78713. [Google Scholar] [CrossRef]
- Fileti, E.E.; Colherinhas, G. Investigating the asymmetry in the EDL response of C60/graphene supercapacitors. Phys. Chem. Chem. Phys. 2019, 21, 15362–15371. [Google Scholar] [CrossRef]
- Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H.; Yang, Q. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142. [Google Scholar] [CrossRef]
- Yang, J.; Yu, C.; Fan, X.; Liang, S.; Li, S.; Huang, H.; Qiu, J. Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307. [Google Scholar] [CrossRef]
- Couly, C.; Alhabeb, M.; Van Aken, K.L.; Kurra, N.; Gomes, L.; Navarrosuarez, A.M.; Gogotsi, Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339. [Google Scholar] [CrossRef] [Green Version]
- Strauss, V.; Marsh, K.; Kowal, M.D.; Elkady, M.F.; Kaner, R.B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.I.; Sunarso, J.; Wong, B.T.; Lin, H.; Yu, A.; Jia, B. Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. J. Power Sources 2018, 396, 182–206. [Google Scholar] [CrossRef]
- Eftekhari, A. The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 2018, 6, 2866–2876. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Y.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X.; Hu, Z. Porous 3D few—Layer grapheme-like carbon for ultrahigh—Power supercapacitors with well—Defined structure—Performance relationship. Adv. Mater. 2017, 29, 1604569. [Google Scholar] [CrossRef]
- Kucinskis, G.; Bajars, G.; Kleperis, J. Graphene in lithium ion battery cathode materials: A review. J. Power Sources 2013, 240, 66–79. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Angaiah, S. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef]
- Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Choi, J.-Y.; Yu, A. Graphene-based flexible supercapacitors: Pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 2011, 115, 17612–17620. [Google Scholar] [CrossRef]
- Khan, Z.; Senthilkumar, B.; Park, S.O.; Park, S.; Yang, J.; Lee, J.H.; Song, H.-K.; Kim, Y.; Kwak, S.K.; Ko, H. Carambola-shaped VO2 nanostructures: A binder-free air electrode for an aqueous Na–air battery. J. Mater. Chem. A 2017, 5, 2037–2044. [Google Scholar] [CrossRef]
- Sheng, L.; Chang, J.; Jiang, L.; Jiang, Z.; Liu, Z.; Wei, T.; Fan, Z. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597. [Google Scholar] [CrossRef]
- Chen, X.; Gu, M. High-performance ultrafine-structured graphene supercapacitors fabricated by femtosecond laser nanolithography. Front. Opt. 2019. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Z.; Zheng, S.; Zhou, F.; Sun, C.; Cheng, H.; Bao, X. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 2017, 11, 4283–4291. [Google Scholar] [CrossRef] [PubMed]
- Hyun, W.J.; Secor, E.B.; Kim, C.H.; Hersam, M.C.; Francis, L.F.; Frisbie, C.D. Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 2017, 7, 1700285. [Google Scholar] [CrossRef]
- Petnikota, S.; Rotte, N.K.; Srikanth, V.V.; Kota, B.S.; Reddy, M.V.; Loh, K.P.; Chowdari, B.V.R. Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. J. Solid State Electrochem. 2014, 18, 941–949. [Google Scholar] [CrossRef]
- Petnikota, S.; Rotte, N.K.; Reddy, M.V.; Srikanth, V.V.; Chowdari, B.V. MgO-decorated few-layered graphene as an anode for Li-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 2301–2309. [Google Scholar] [CrossRef]
- Li, L.; Secor, E.B.; Chen, K.S.; Zhu, J.; Liu, X.; Gao, T.Z.; Hersam, M.C. High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv. Energy Mater. 2016, 6, 1600909. [Google Scholar] [CrossRef]
- Zhang, C.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019, 16, 102–125. [Google Scholar] [CrossRef]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Naderi, H.R.; Norouzi, P.; Ganjali, M.R. Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci. 2016, 366, 552–560. [Google Scholar] [CrossRef]
- Ramadoss, A.; Yoon, K.; Kwak, M.; Kim, S.; Ryu, S.; Jang, J. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. J. Power Sources 2017, 337, 159–165. [Google Scholar] [CrossRef]
- Gao, X.; Lv, H.; Li, Z.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Low-cost and high-performance of a vertically grown 3D Ni–Fe layered double hydroxide/graphene aerogel supercapacitor electrode material. RSC Adv. 2016, 6, 107278–107285. [Google Scholar] [CrossRef]
- Aradilla, D.; Delaunay, M.; Sadki, S.; Gérard, J.M.; Bidan, G. Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: Towards high performance on-chip micro-supercapacitors. J. Mater. Chem. A 2015, 3, 19254–19262. [Google Scholar] [CrossRef]
- Kim, D.W.; Jung, S.M.; Jung, H.Y. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 2020, 8, 532–542. [Google Scholar] [CrossRef]
- Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290. [Google Scholar] [CrossRef]
- Li, R.Z.; Peng, R.; Kihm, K.D.; Bai, S.; Bridges, D.; Tumuluri, U.; Hu, A. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467. [Google Scholar] [CrossRef]
- Tian, X.; Jin, J.; Yuan, S.; Chua, C.K.; Tor, S.B.; Zhou, K. Emerging 3D-printed electrochemical energy storage devices: A critical review. Adv. Energy Mater. 2017, 7, 1700127. [Google Scholar] [CrossRef]
- Han, W.; Wu, Z.; Li, Y.; Wang, Y. Graphene family nanomaterials (GFNs)—Promising materials for antimicrobial coating and film: A review. Chem. Eng. J. 2019, 358, 1022–1037. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.; Yang, S.; Liu, J.; Tian, Q.; Yao, W.; Wu, W. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors. J. Power Sources 2017, 361, 31–38. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z.; Qu, L. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448–6451. [Google Scholar] [CrossRef] [PubMed]
- Khosrozadeh, A.; Darabi, M.A.; Xing, M.; Wang, Q. Flexible electrode design: Fabrication of freestanding polyaniline-based composite films for high performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 11379–11389. [Google Scholar] [CrossRef] [PubMed]
- Goh, B.M.; Wang, Y.; Reddy, M.V.; Ding, Y.L.; Lu, L.; Bunker, C.; Loh, K.P. Filling the voids of graphene foam with graphene “eggshell” for improved lithium-ion storage. ACS Appl. Mater. Interfaces 2014, 6, 9835–9841. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, P.; Cai, C.; Fu, Y.; Ma, X. Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage. Adv. Energy Mater. 2016, 6, 1600813. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, Y.; Deng, Q.; Zhou, J.; Pei, Z.; Xue, Q.; Zhi, C. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 2016, 6, 1600969. [Google Scholar] [CrossRef]
- Manjakkal, L.; Nunez, C.G.; Dang, W.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 2018, 51, 604–612. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202. [Google Scholar] [CrossRef]
- Song, Y.; Liu, T.; Xu, X.; Feng, D.; Li, Y.; Liu, X. Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 2015, 25, 4626–4632. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, W.; Niu, Y.; Zhang, Y.; Wang, L.; Zhang, W.; Li, Q. Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 2018, 132, 241–248. [Google Scholar] [CrossRef]
- Luo, J.; Wang, J.; Liu, S.; Wu, W.; Jia, T.; Yang, Z.; Huang, Y. Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 2019, 146, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Wang, L.; Bu, F.; Wei, J.; Pan, D.; Wu, M. Hierarchical 3D all-carbon composite structure modified with N-doped graphene quantum dots for highperformance flexible supercapacitors. Small 2018, 14, 1801498. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Feng, Y.Q.; Yan, X.B.; Chen, J.T.; Xue, Q.J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122. [Google Scholar] [CrossRef]
- Yin, X.; Zhi, C.; Sun, W.; Lv, L.P.; Wang, Y. Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J. Mater. Chem. A 2019, 7, 7800–7814. [Google Scholar] [CrossRef]
- Li, Z.; Bu, F.; Wei, J.; Yao, W.; Wang, L.; Chen, Z.; Wu, M. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon. Nanoscale 2018, 10, 22871–22883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Song, H.; Chen, X.; Zhou, J.; Hong, S.; Huang, M. Graphene quantum dots as the electrolyte for solid state supercapacitors. Sci. Rep. 2016, 6, 19292. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Kaur, M.; Sharma, V.K. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 2018, 259, 44–64. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Hu, C.; Cheng, H.; Zhang, Z.; Shao, H.; Qu, L. Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 19307–19313. [Google Scholar] [CrossRef]
- Yulong, Y.; Peng, X. Recent advances in carbon-based dots for electroanalysis. Analyst 2016, 141, 2619–2628. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Chowdhury, A.D.; Doong, R. Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim. Acta 2017, 245, 912–923. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Chowdhury, A.D.; Doong, R. New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 4930–4940. [Google Scholar] [CrossRef]
- Tjandra, R.; Liu, W.; Zhang, M.; Yu, A. All-carbon flexible supercapacitors based on electrophoretic deposition of graphene quantum dots on carbon cloth. J. Power Sources 2019, 438, 227009. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, W.; Liang, R.; Tjandra, R.; Yu, A. Graphene quantum dot induced tunable growth of nanostructured MnCo2O4.5 composites for high-performance supercapacitors. Sustain. Energy Fuels 2019, 3, 2499–2508. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Ojha, A.K. Charcoal derived graphene quantum dots for flexible supercapacitor oriented applications. New J. Chem. 2020, 44, 11085–11091. [Google Scholar] [CrossRef]
- Tian, W.; Zhu, J.; Dong, Y.; Zhao, J.; Li, J.; Guo, N.; Jia, D. Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon 2020, 161, 89–96. [Google Scholar] [CrossRef]
- Lee, K.; Lee, H.; Shin, Y.; Yoon, Y.; Kim, D.; Lee, H. Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 2016, 26, 746–754. [Google Scholar] [CrossRef]
- Lehtimäki, S.; Suominen, M.; Damlin, P.; Tuukkanen, S.; Kvarnström, C.; Lupo, D. Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl. Mater. Interfaces 2015, 7, 22137–22147. [Google Scholar] [CrossRef]
- Li, Z.; Wei, J.; Ren, J.; Wu, X.; Wang, L.; Pan, D.; Wu, M. Hierarchical construction of high-performance all-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantum dots. Carbon 2019, 154, 410–419. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wang, L.; Cao, L.; Liu, X.; Chen, Z.; Wu, M. Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors. Electrochim. Acta 2017, 235, 561–569. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, C.; Yao, C.; Jin, X. Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel. Org. Electron. 2020, 78, 105407. [Google Scholar] [CrossRef]
- Islam, M.S.; Deng, Y.; Tong, L.; Roy, A.K.; Faisal, S.N.; Hassan, M.; Gomes, V.G. In-situ direct grafting of graphene quantum dots onto carbon fibre by low temperature chemical synthesis for high performance flexible fabric supercapacitor. Mater. Today Commun. 2017, 10, 112–119. [Google Scholar] [CrossRef]
- Yu, J.; Wang, M.; Xu, P.; Cho, S.; Suhr, J.; Gong, K.; Chou, T. Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon 2017, 119, 332–338. [Google Scholar] [CrossRef]
- Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652–13659. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, J.; Wang, Q.; Du, P.; Wei, W.; Liu, P. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors. Carbon 2019, 143, 147–153. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Xu, Z.; Zheng, B.; Huang, T.; Kou, L.; Zhao, X.; Gao, C. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595–8600. [Google Scholar] [CrossRef]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Huang, Y.; Pei, Z.; Li, H.; Wang, Z.; Zhi, C. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; Jiang, W.; Yang, Y.; Leow, W.R.; Wang, H.; Chen, X. A mechanically and electrically self-healing supercapacitor. Adv. Mater. 2014, 26, 3638–3643. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Zhu, M.; Meng, W.; Pei, Z.; Liu, C.; Zhi, C. Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 2015, 9, 6242–6251. [Google Scholar] [CrossRef]
- Wang, S.; Liu, N.; Su, J.; Li, L.; Long, F.; Zou, Z.; Gao, Y. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 2017, 11, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Huang, T.; Kou, L.; Zhao, X.; Gopalsamy, K.; Gao, C. Graphene fiber-based asymmetric micro-supercapacitors. J. Mater. Chem. A 2014, 2, 9736–9743. [Google Scholar] [CrossRef]
- An, Y.; Yang, Y.; Hu, Z.; Guo, B.; Wang, X.; Yang, X.; Wu, H. High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 2017, 337, 45–53. [Google Scholar] [CrossRef]
- Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056–11065. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Wei, T.; Liang, Y.; Jiang, L.; Qu, L.; Fan, Z. Vertically oriented graphene nanoribbon fibers for high-volumetric energy density all-solid-state asymmetric supercapacitors. Small 2017, 13, 1700371. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; He, Y.; Bai, Y.; Kang, L.; Xu, H.; Liu, Z. δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J. Mater. Chem. 2016, 4, 9088–9096. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Cui, L.; Chen, N.; Qu, L. Preparation and supercapacitor performance of assembled graphene fiber and foam. Prog. Nat. Sci. Mater. Int. 2016, 26, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Lai, T.; Ye, J. A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors. J. Mater. Chem. 2015, 3, 5060–5066. [Google Scholar] [CrossRef]
- Chen, G.; Ai, Y.; Mugaanire, I.T.; Ma, W.; Hsiao, B.S.; Hou, K.; Zhu, M. A simple inorganic hybrids strategy for graphene fibers fabrication with excellent electrochemical performance. J. Power Sources 2020, 450, 227637. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, B.; Huang, T.; Gao, C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 2015, 7, 9399–9404. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, L.; Shao, J. Electrochemical performance of flexible graphene-based fibers as electrodes for wearable supercapacitors. Synth. Met. 2018, 246, 108–114. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, X.; Su, F.; Lyu, X.; Miao, M. Sandwich-structured transition metal oxide/graphene/carbon nanotube composite yarn electrodes for flexible two-ply yarn supercapacitors. Ind. Eng. Chem. Res. 2020, 59, 5752–5759. [Google Scholar] [CrossRef]
- Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Peng, H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646–3652. [Google Scholar] [CrossRef] [PubMed]
- Gopalsamy, K.; Yang, Q.; Cai, S.; Huang, T.; Gao, Z.; Gao, C. Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. J. Energy Chem. 2019, 34, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Zhang, Y.; Li, H.; Pan, L.; Li, Y.; Sun, Z. Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim. Acta 2010, 55, 4170–4173. [Google Scholar] [CrossRef]
- Shao, Y.; Elkady, M.F.; Lin, C.; Zhu, G.; Marsh, K.L.; Hwang, J.Y.; Kaner, R.B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726. [Google Scholar] [CrossRef]
- Song, H.; Fu, J.; Ding, K.; Huang, C.; Wu, K.; Zhang, X.; Chu, P.K. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J. Power Sources 2016, 328, 599–606. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Ai, Q.; Li, D.; Si, P.; Feng, J.; Ci, L. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 2018, 334, 184–190. [Google Scholar] [CrossRef]
- Guan, F.; Chen, S.; Sheng, N.; Chen, Y.; Yao, J.; Pei, Q.; Wang, H. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 2019, 360, 829–837. [Google Scholar] [CrossRef]
- Qin, K.; Kang, J.; Li, J.; Liu, E.; Shi, C.; Zhang, Z.; Zhao, N. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance. Nano Energy 2016, 24, 158–164. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, X.; Jiang, H.; Xia, J.; Yue, Z.; Wang, L.; Yao, X. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power Sources 2020, 453, 227851. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Cheng, C.; Gao, J.; Jin, X.; Gallop, J.C.; Hao, L. Facile synthesis of metal@carbon sphere/graphene film electrodes with enhanced energy density for flexible asymmetric all-solid-state supercapacitors. J. Electroanal. Chem. 2019, 847, 113199. [Google Scholar] [CrossRef]
- He, Y.; Zhang, P.; Wang, M.; Wang, F.; Tan, D.; Li, Y.; Feng, X. Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Mater. Horiz. 2019, 6, 1041–1049. [Google Scholar] [CrossRef]
- Choi, H.; Nguyen, P.T.; In, J.B. Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. Appl. Surf. Sci. 2019, 483, 481–488. [Google Scholar] [CrossRef]
- Jiang, D.; Liang, H.; Yang, W.; Liu, Y.; Cao, X.; Zhang, J.; Gooding, J.J. Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors. Carbon 2019, 146, 557–567. [Google Scholar] [CrossRef]
- Yan, J.; Ren, C.E.; Maleski, K.; Hatter, C.B.; Anasori, B.; Urbankowski, P.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264. [Google Scholar] [CrossRef]
- Bahar, N.; Ekinci, D. Hollow porous gold nanoparticle/reduced graphene oxide composite films for electrochemical supercapacitor applications. Electrochim. Acta 2020, 337, 135844. [Google Scholar] [CrossRef]
- Song, Z.; Fan, Y.; Sun, Z.; Han, D.; Bao, Y.; Niu, L. A new strategy for integrating superior mechanical performance and high volumetric energy density into a Janus graphene film for wearable solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 20797–20807. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R.B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 2017, 4, 1145–1150. [Google Scholar] [CrossRef]
- Yang, D.; Bock, C. Laser reduced graphene for supercapacitor applications. J. Power Sources 2017, 337, 73–81. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, X.; Luo, B.; Yan, M.; Jiang, J.; Shi, W. MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon 2016, 107, 426–432. [Google Scholar] [CrossRef]
- Le, T.; Aradilla, D.; Bidan, G.; Billon, F.; Delaunay, M.; Gérard, J.M.; Sel, O. Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. Electrochem. Commun. 2018, 93, 5–9. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Kim, N.; Suhr, J.; Chae, H. A flexible supercapacitor based on vertically oriented ‘Graphene Forest’electrodes. J. Mater. Chem. A 2015, 3, 21875–21881. [Google Scholar] [CrossRef]
- Singh, R.; Tripathi, C.C. Study of graphene based flexible supercapacitors with different gel electrolytes. Mater. Today Proc. 2018, 5, 943–949. [Google Scholar] [CrossRef]
- Jin, Y.; Meng, Y.; Fan, W.; Lu, H.; Liu, T.; Wu, S. Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor. Electrochim. Acta 2019, 318, 865–874. [Google Scholar] [CrossRef]
- Wen, S.; Qin, K.; Liu, P.; Zhao, N.; Shi, C.; Ma, L.; Liu, E. Ultrafine Ni(OH)2 nanoneedles on N-doped 3D rivet graphene film for high-performance asymmetric supercapacitor. J. Alloy. Compd. 2019, 783, 625–632. [Google Scholar] [CrossRef]
- Garcia, A.G.; Baltazar, S.E.; Castro, A.H.; Robles, J.F.; Rubio, A. Influence of S and P doping in a graphene sheet. J. Comput. Theor. Nanosci. 2008, 5, 2221–2229. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, M.; Zhao, W.; Duan, C.; Ni, Y. Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. J. Mater. 2020, 6, 523–531. [Google Scholar] [CrossRef]
- Wu, Z.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Mullen, K. Three-dimensional nitrogen and boron co-doped Graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135. [Google Scholar] [CrossRef]
- Yu, X.; Pei, C.; Feng, L. Surface modulated hierarchical graphene film via sulfur and phosphorus dual-doping for high performance flexible supercapacitors. Chin. Chem. Lett. 2019, 30, 1121–1125. [Google Scholar] [CrossRef]
- Liu, D.; Fu, C.; Zhang, N.; Zhou, H.; Kuang, Y. Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim. Acta 2016, 213, 291–297. [Google Scholar] [CrossRef]
- An, H.; Li, Y.; Long, P.; Gao, Y.; Qin, C.; Cao, C.; Feng, W. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 2016, 312, 146–155. [Google Scholar] [CrossRef]
- Pan, Z.; Zhi, H.; Qiu, Y.; Yang, J.; Xing, L.; Zhang, Q.; Zhang, Y. Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 2018, 46, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Khazaeli, A.; Godbille-Cardona, G.; Barz, D.P. A novel flexible hybrid battery–supercapacitor based on a self-assembled vanadium-graphene hydrogel. Adv. Funct. Mater. 2020, 30, 1910738. [Google Scholar] [CrossRef]
- Tang, X.; Liu, C.; Chen, X.; Deng, Y.; Chen, X.; Shao, J.; Yang, Q. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon 2019, 146, 147–154. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, M.; Yang, J.; Qiu, Y.; Li, W.; Xu, Y.; Zhang, Y. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric Supercapacitors. Adv. Funct. Mater. 2017, 27, 1701122. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Zhang, B.; Zhao, K.; He, P.; Huang, B. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 2018, 127, 449–458. [Google Scholar] [CrossRef]
- Yu, X.; Kang, Y.; Park, H.S. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 2016, 101, 49–56. [Google Scholar] [CrossRef]
- Wang, R.; Xu, C.; Lee, J. High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 2016, 19, 210–221. [Google Scholar] [CrossRef]
- Guo, D.; Qin, J.; Yin, Z.; Bai, J.; Sun, Y.; Cao, M. Achieving high mass loading of Na3V2 (PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136–147. [Google Scholar] [CrossRef]
- Wu, D.; Zhong, W. A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. J. Mater. Chem. 2019, 7, 5819–5830. [Google Scholar] [CrossRef]
- Li, B.; Tian, Z.; Li, H.; Yang, Z.; Wang, Y.; Wang, X. Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim. Acta 2019, 314, 32–39. [Google Scholar] [CrossRef]
- Lv, H.; Yuan, Y.; Xu, Q.; Liu, H.; Wang, Y.G.; Xia, Y. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J. Power Sources 2018, 398, 167–174. [Google Scholar] [CrossRef]
- Lv, P.; Tang, X.; Zheng, R.; Ma, X.; Yu, K.; Wei, W. Graphene/polyaniline aerogel with superelasticity and high capacitance as highly compression-tolerant supercapacitor electrode. Nanoscale Res. Lett. 2017, 12, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhou, H.; Huang, Z.; Wang, W.; Zeng, F.; Kuang, Y. Graphene covalently functionalized with poly(p-phenylenediamine) as high performance electrode material for supercapacitors. J. Mater. Chem. 2013, 1, 3454–3462. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Huang, Z.; Li, H.; Fu, C.; Chen, L.; Kuang, Y. In situ growth of single-stranded like poly (o-phenylenediamine) onto graphene for high performance supercapacitors. Electrochim. Acta 2017, 245, 41–50. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Wu, D.; Li, K.; Qin, Y.; Tao, Y.; Kong, Y. Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chem. Commun. 2019, 55, 738–1741. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Y.; Liu, Z.; Li, A.; Sun, D.; Zhuo, K. Nitrogen and sulfur co-doped graphene aerogel for high performance supercapacitors. RSC Adv. 2018, 8, 18966–18971. [Google Scholar] [CrossRef] [Green Version]
Electrode Material | Electrolyte | Potential Window | Highest Specific Capacitance | Energy Density | Cycling Stability | Ref. |
---|---|---|---|---|---|---|
GQD/carbon cloth | H2SO4/PVA gel | 0.8 V | 70 mF/cm2 | 24.8 mWh/cm2 | - | [73] |
N-GQD@Fe3O4-HNTs (halloysite nanotubes) | Na2SO4 | 1 V | 418 F/g | 10.4–29 Wh/kg | 82% (3000 cycles) | [71] |
MCO-40 GQDs//RGO | - | 1.4 V | 1625 F/g | 46 Wh/kg | - | [74] |
ipG (interdigitated pattern of graphene)-GQDs film | PVA/H3PO4 gel | 1.5 V | 7.02 μF/cm2 | 727 nWh/cm2 | 100% (10,000 cycles) | [77] |
Charcoal-derived GQDs | PVA/KOH gel | 1 V | 257 F/g | 17.36 Wh/kg | 91% (1000 cycles) | [75] |
GQD-puzzled porous carbon | - | 0.9 V | 315 F/g | 6.45 Wh/kg | 100% (10,000 cycles) | [76] |
GQD-HNT | Na2SO4 | 1 V | 363 F/g | 30−50 Wh/kg | 88% (5000 cycles) | [72] |
NiCo2O4@GQDs//AC (activated carbon) | KOH | 1.6 V | 1242 F/g | 38 Wh/kg | 99% (4000 cycles) | [62] |
N-GQD@cZIF (carbonized MOF)-8//CNT | H2SO4/PVA gel | 1 V | 540 F/g | 14 Wh/kg | 82% (5000 cycles) | [63] |
Electrode Material | Electrolyte | Potential Window | Highest Specific Capacitance | Energy Density | Cycling Stability | Ref. |
---|---|---|---|---|---|---|
MnO2-coated core sheath GFbs//graphene-CNTs hybrid fibers | PVA/LiCl gel | 1.6 V | 23.6 mF/cm2 | 11.9 µWh/cm2 | 92.7% (8000 cycles) | [92] |
N-CNF (carbon nanosheets framework) | KOH | 1 V | 242 F/g | 60.4 Wh/kg | 92.1% (5000 cycles) | [93] |
HAGFs (hydrothermally activated graphene fiber) | PVA/H2SO4 gel | 0.8 V | 7398 mF/cm2 | - | 100% (5000 cycles) | [94] |
(vertically oriented graphene nanoribbon) VGR fiber//VGR/MnO2 | PVP/Na2SO4 | 1.8 V | 234.8 F/cm3 | 5.7 mWh/cm3 | 88% (10,000 cycles) | [95] |
(graphene nanoribbon) GR fiber | Na2SO4 | 1 V | 2.9 mF/cm | - | - | [95] |
Laser-treated GN fiber | Na2SO4 | 1 V | 3.0 mF/m | - | - | [95] |
VGR fiber | Na2SO4 | 1 V | 3.2 mF/cm | - | 96% (10,000 cycles) | [95] |
GFbs-based WSS (wire-shaped supercapacitor) | H2SO4-PVA | 0.8 V | 443 mF/cm2 | 0.0123 mWh/cm3 | 105% (10,000 cycles) | [83] |
(microporous graphene) MGP fibers | H2SO4 | 0.8 V | 36.95 mF/cm | - | 96.31% (2000 cycles) | [85] |
carbon nanotube-GFbs | PVA/H3PO4 gel | 0.9 V | 305 F/cm3 | 6.3 mWh/cm3 | 93% (10,000 cycles) | [87] |
MnO2(4.0)/HRGO fiber | PVA/H3PO4 gel | 1 V | 16.7 mF/cm2 | - | 80% (10,000 cycles) | [96] |
Electrode Material | Electrolyte | Potential Window | Highest Specific Capacitance | Energy Density | Cycling Stability | Ref. |
CNFs@PPy@rGO film | PVA/H3PO4 gel | 1 V | 336.2 F/g | - | 98% (2500 cycles) | [108] |
HRGO/BC (bacterial cellulose ) film | PVA/H3PO4 gel | 1 V | 65.9 F/g | 9.2 Wh/kg | 88% (5000 cycles) | [109] |
Hnp-G (hierarchical nanoporous graphene) film | PVA/H2SO4 gel | 1 V | 38.2 F/cm3 | 2.65 mWh/cm3 | 94% (10,000 cycles) | [110] |
GH film | ZnSO4 | 1.6 V | 608 mF/cm2 | 76.2 Wh/kg | 90% (10,000 cycles) | [111] |
Fe@carbon sphere/GF//Co@carbon sphere/GF | PVA/H2SO4 gel | 1.8V | 13.3 F/cm3 | 5.99 mWh/cm3 | 87.3% (10,000 cycles) | [112] |
(Cu hexacyanoferrate) CuHCF/G (graphene)//FeHCF/G | LiCl/PVA gel | 1.8 V | 19.8 mF/cm2 | 44.6 mWh/cm3 | 96.8% (5000 cycles) | [113] |
CuHCF/G//CoHCF/G | LiCl/PVA gel | 1.4 V | 9.2 mF/cm2 | 15.0 mWh/cm3 | 94.1% (5000 cycles) | [113] |
CuHCF/G//NiHCF/G | LiCl/PVA gel | 1.4 V | 11.1 mF/cm2 | 12.5 mWh/cm3 | 92.5% (5000 cycles) | [113] |
Laser-modified GF | PVA/H3PO4 gel | 0.8 V | 4.7 mF/cm2 | 169 μWh/cm3 | 96% (10,000 cycles) | [114] |
G/CoS2/Ni3S4//GF | KOH/PVA gel | 1.5 V | 840.5 mF/cm2 | 44.9 Wh/kg | 79.6% (10,000 cycles) | [115] |
Cellular GF | PVA/H3PO4 gel | 1 V | 1.7 mF/cm2 | 0.22 μWh/cm2 | 77.6% (5000 cycles) | [116] |
Electrode Material | Electrolyte | Potential Window | Highest Specific Capacitance | Energy Density | Cycling Stability | Ref. |
---|---|---|---|---|---|---|
FGH (fluorinated graphene hydrogel) | KOH | 1 V | 227 F/g | 50.5 Wh/kg | 94% (2000 cycles) | [132] |
BNP-HGH (boron, nitrogen and phosphorus ternary-doped holey graphene hydrogel) | H2SO4/PVA gel | 1 V | 350 F/g | 38.5 Wh/kg | 81.3% (5000 cycle) | [133] |
N-RGOH (reduced graphene oxide hydrogel) | BMIMPF6 | 3.2 V | 194.4 F/g | 94.5 Wh/kg | 87% (5000 cycles) | [131] |
V (vanadium)-GH | NEOSEPTA CMS | 1.2 V | 226 mAh/g | 75.7 Wh/kg | 98% (1000 cycles) | [134] |
H–NiOOH/GHs//H-GHs | KOH | 1.6 V | 1162 F/g | 66.8 Wh/kg | 85.3% (8000 cycles) | [139] |
GA (GO aqueous) | KOH | 1 V | 216 F/g | 120 Wh/kg | 87% (5000 cycles) | [135] |
H-GA (HCl-GO aqueous) | KOH | 1 V | 243 F/g | 135 Wh/kg | 87% (5000 cycles) | [135] |
MnO2@CNTs@3DGA//Ppy@CNTs@3DGA | Na2SO4/PVA gel | 1.7 V | - | 3.85 Wh/cm3 | 84.6% (10,000 cycles) | [136] |
GA-GNs (graphene nanosheets) | H3PO4/PVA | 1 V | 245 F/g | - | 92% (10,000 cycles) | [137] |
SP-GA | H2SO4 | 0.8 V | 438 F/g | 22.3 Wh/kg | 87.2% (10,000 cycles) | [138] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Xiao, P.; Yuan, J.; Chen, J. Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings 2020, 10, 892. https://doi.org/10.3390/coatings10090892
Du Y, Xiao P, Yuan J, Chen J. Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings. 2020; 10(9):892. https://doi.org/10.3390/coatings10090892
Chicago/Turabian StyleDu, Yongquan, Peng Xiao, Jian Yuan, and Jianwen Chen. 2020. "Research Progress of Graphene-Based Materials on Flexible Supercapacitors" Coatings 10, no. 9: 892. https://doi.org/10.3390/coatings10090892
APA StyleDu, Y., Xiao, P., Yuan, J., & Chen, J. (2020). Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings, 10(9), 892. https://doi.org/10.3390/coatings10090892