Microencapsulation of Cannabidiol in Liposomes as Coating for Cellulose for Potential Advanced Sanitary Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.1.1. Liquid Formulations
2.1.2. Functionalized Cotton and Viscose Tampons
2.2. Methods for Characterization of Liquid Formulations
2.2.1. Particle Size, Polydispersity Index (PDI), and Zeta Potential Determination
2.2.2. Encapsulation Efficiency
2.3. Methods for Characterization of Functionalized Tampons
2.3.1. ATR FTIR Analysis
2.3.2. Moisture Content and Mass Determination
2.3.3. Scanning Electron Microscopy Evaluation
2.3.4. Antioxidant Activity
2.3.5. Antimicrobial Activity
2.3.6. Desorption Evaluation
2.3.7. Biodegradability Test
3. Results and Discussion
3.1. Liquid Formulations
3.1.1. Particle Size, PDI, and Zeta Potential Determination
3.1.2. Encapsulation Efficiency
3.2. Functionalized Tampons
3.2.1. ATR FTIR Evaluation
3.2.2. Moisture Content and Mass Determination
3.2.3. Scanning Electron Microscopy Evaluation
3.2.4. Antioxidant Activity
3.2.5. Antimicrobial Activity
3.2.6. Desorption Evaluation
3.2.7. Biodegradability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mariagiulia, B.; Lazzeri, L.; Perelli, F.; Reis, F.; Petraglia, F. Dysmenorrhea and related disorders. F1000Research 2017, 6, 1645. [Google Scholar]
- Rajkumar, H.; Ramalaxmi, B.; Swetha, E.; Balakrishna, N.; Mastromarino, P. Evaluation of vaginal pH for detection of bacterial vaginosis. Indian J. Med. Res. 2013, 138, 354–359. [Google Scholar]
- Bruni, N.; Della-Pepa, C.; Oliaro-Bosso, S.; Pessione, E.; Gastaldi, D.; Dosio, F. Cannabinoid delivery systems for pain and inflammation treatment. Molecules 2018, 23, 2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creagh, S.; Warden, D.; Latif, M.; Paydar, A. The new classes of synthetic illicit drugs can significantly harm the brain: A neuro imaging perspective with full review of MRI findings. Clin. Radiol. Imaging J. 2018, 2, 000116. [Google Scholar] [PubMed]
- Shannon, S. Cannabidiol in anxiety and sleep: A large case series. Perm. J. 2019, 23, 18–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, S. Cannabidiol (Cbd) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- Russo, E.B. Cannabinoids in the management of difficult to treat pain. Ther. Clin. Risk Manag. 2008, 4, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Mücke, M.; Phillips, T.; Radbruch, L.; Petzke, F.; Häuser, W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2018, 3, Cd012182. [Google Scholar] [CrossRef]
- Couch, D.G.; Tasker, C.; Theophilidou, E.; Lund, J.N.; O’Sullivan, S.E. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon. Clin. Sci. 2017, 131, 2611–2626. [Google Scholar] [CrossRef]
- Mendes, H.A.C.; Lima, D.; de Costa, F.; Deshmukh, K.; Li, N.; Chow, A.M.; Marques, J.A.; Pereira, R.P.; Kerman, K. Probing the antioxidant activity of δ9-tetrahydrocannabinol and cannabidiol in cannabis sativa extracts. Analyst 2019, 144, 4952–4961. [Google Scholar]
- Borges, R.S.; da Silva, A.B.F. Cannabidiol as an antioxidant. In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2017; Chapter E12; pp. e122–e130. [Google Scholar]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and nonpsychoactive cannabinoids: Their chemistry and role against oxidative stress, inflammation, and cancer. Biomed. Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and Delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (–)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 1998, 95, 8268–8273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayat, Z.; Mohamed, K.; Kim, H.; Kim, E.; Frank, C.; Black, T.; Jadhav, P.; Holbrook, L.; Laprairie, R. In vitro and in vivo pharmacological activity of minor cannabinoids isolated from cannabis sativa. Sci. Rep. 2020, 10, 20405. [Google Scholar]
- Nichol, K.; Stott, C.; Jones, N.; Gray, R.A.; Bazelot, M.; Whalley, B.J. The proposed multimodal mechanism of action of cannabidiol (CBD) in epilepsy: Modulation of intracellular calcium and adenosine-mediated signaling. Neurology 2019, 92 (Suppl. 15), P5.5-007. [Google Scholar]
- Ethan, R. Cannabis treatments in obstetrics and gynecology: A historical review. J. Cannabis Ther. 2002, 2, 5–35. [Google Scholar]
- Bergamaschi, M.M.; Queiroz, R.H.; Zuardi, A.W.; Crippa, J.A. Safety and side effects of cannabidiol, a cannabis sativa constituent. Curr. Drug Saf. 2011, 6, 237–249. [Google Scholar] [CrossRef]
- Huestis, M.A.; Solimini, R.; Pichini, S.; Pacifici, R.; Carlier, J.; Busardò, F.P. Cannabidiol adverse effects and toxicity. Curr. Neuropharmacol. 2019, 17, 974–989. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Arroyo-Ariza, D.; Suesca, E.; Leidy, C.; Gonzalez, J.M. Sulfatide-rich liposome uptake by a human-derived neuroblastoma cell line. Processes 2020, 8, 1615. [Google Scholar] [CrossRef]
- Sharif, S.; Ahmed, F.; Hossen, M.N.; Ahmed, M.; Amran, M.; Islam, M.A.U. Liposome as a carrier for advanced drug delivery. Pak. J. Biol. Sci. 2006, 9, 1181–1191. [Google Scholar]
- Schäfer-Korting, M.; Mehnert, W.; Korting, H.-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 2007, 59, 427–443. [Google Scholar] [CrossRef] [PubMed]
- el Maghraby, G.; Barry, B.; Williams, A. Liposomes and skin: From drug delivery to model membranes. J. Pharm. Pharmacol. 2008, 58, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef] [Green Version]
- Pardeike, J.; Hommoss, A.; Müller, R. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2008, 366, 170–184. [Google Scholar] [CrossRef]
- Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol—Transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release Off. J. Control. Release Soc. 2004, 93, 377–387. [Google Scholar] [CrossRef]
- Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. In Application of Nanotechnology in Drug Delivery; BoD—Books on Demand: Norderstedt, Germany, 2014. [Google Scholar]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Donnsky, M.; Winnicki, R. Terpene and Cannabinoid Formulations. U.S. Patent Wo2015068052a2, 14 May 2015. [Google Scholar]
- Foria. Available online: https://foriapleasure.com/products/relief (accessed on 19 November 2020).
- Daye. Available online: https://yourdaye.com (accessed on 15 April 2020).
- Ghorbanzade, T.; Jafari, S.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2016, 216, 146–152. [Google Scholar] [CrossRef]
- Zetasizer Nano. Available online: https://manualzilla.com/doc/5827440/manual-zetasizer-nano-user-manual-man0485-1.1 (accessed on 19 November 2020).
- Anton Paar. Available online: https://wiki.anton-paar.com/en/the-principles-of-dynamic-light-scattering (accessed on 19 November 2020).
- Clogston, J.; Patri, A. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar]
- Stana-Kleinschek, K.; Strnad, S.; Ribitsch, V. Surface characterization and adsorption abilities of cellulose fibers. Polym. Eng. Sci. 1999, 39, 1412–1424. [Google Scholar] [CrossRef]
- Malafiya, M.; Abubakar, K.; Danmaigoro, A.; Chiroma, M.S.; Rahim, E.A.; Moklas, M.A.M.; Zakaria, Z. Evaluation of in vitro release kinetics and mechanisms of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles. Biomed. Res. Ther. 2019, 6, 3518–3540. [Google Scholar] [CrossRef]
- Bartosz, G.; Bartosz, M. Antioxidant activity: What do we measure? Acta Biochim. Pol. 1999, 46, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.J.; Williams, J.T.; Walsh, S.E.; Painter, P. Comparison of antimicrobial textile treatments. In Medical and Healthcare Textiles; Woodhead Publishing Series in Textiles: Cambridge, UK, 2010; pp. 38–47. [Google Scholar]
- Siudem, P.; Wawer, I.; Paradowska, K. Rapid evaluation of edible hemp oil quality using NMR and ft-IR spectroscopy. J. Mol. Struct. 2018, 1177, 204–208. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.; Sivapragasam, G.; Fakurazi, S.; Me, N.; SureshKumar, S.; Kumar, S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Sanjust, E.; Meli, M.; Sollai, F.; Zucca, P.; Rescigno, A. Supercritical CO2 extract of cinnamomum zeylanicum: Chemical characterization and antityrosinase activity. J. Agric. Food Chem. 2007, 55, 10022–10027. [Google Scholar] [CrossRef]
- Longaray-Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of salvia officinalis L. and salvia triloba L. cultivated in south Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Scriboni-Borges, A.; Couto, V.M.; Ribeiro, L.N.d.; Freires, I.A.; Groppo, F.C.; de Paula, E.; Franz-Montan, M.; Cogo-Müller, K. Fusogenic liposomes increase the antimicrobial activity of vancomycin against staphylococcus aureus biofilm. Front. Pharmacol. 2019, 10, 1401. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Branen, J.; Davidson, P. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol. 2004, 90, 63–74. [Google Scholar] [CrossRef]
- Karlsson, S.; Albertsson, A.-C. Biodegradable polymers and environmental interaction. Polym. Eng. Sci. 1998, 38, 1251–1253. [Google Scholar] [CrossRef]
- Trofin, I.; Dabija, G.; Vaireanu, D.; Laurentiu, F. Long—Term storage and cannabis oil stability. Rev. Chim. 2012, 53, 294. [Google Scholar]
- Soliman, A.H.; Radwan, S.S. Degradation of sterols, triacylglycerol, and phospholipids by soil microorganisms. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. Zweite Nat. Abt. Mikrobiol. Landwirtsch. Technol. Umweltschutzes 1981, 136, 420–426. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, T. Cooperation of simulation and data model for performance analysis of complex systems. Int. J. Simul. Model. 2019, 18, 608–619. [Google Scholar] [CrossRef]
Description of Sample |
---|
Cotton tampon, non-treated |
Viscose tampon, non-treated |
Cotton tampon, dipped into cannabidiol (CBD) liposome liquid formulation |
Viscose tampon, dipped into CBD liposome liquid formulation |
Cotton tampon, dipped into CBD oil only |
Sample | Particle Size (nm) | PDI | Zeta Potential (mV) |
Liquid formulation with CBD liposome | 1910.3 ± 90.7 | 0.8 ± 0.1 | −5.0 ± 1.6 |
Liquid formulation without CBD, liposome only | 1559.7 ± 142.0 | 0.7 ± 0.1 | 6.4 ± 0.4 |
Sample | Mass of Non-Treated Sample (g) | Mass of Functionalized Sample (g) | Δ Mass (g) | ||
---|---|---|---|---|---|
Original | Dry | Original | Dry | ||
Cotton CBD liposome | 2.8 ± 0.2 | 2.7 ± 0.1 | 6.5 ± 0.3 | 5.9 ±0.4 | 3.2 ± 0.5 |
Viscose CBD liposome | 2.3 ± 0.0 | 2.1 ± 0.0 | 5.7 ± 0.2 | 5.2 ± 0.2 | 3.1 ± 0.2 |
Cotton CBD oil | 2.8 ± 0.0 | 2.6 ± 0.4 | 3.8 ± 0.0 | 3.6 ± 0.3 | 1.0 ± 0.0 |
Viscose CBD oil | 2.3 ± 0.0 | 2.0 ± 0.1 | 2.8 ± 0.1 | 2.4 ± 0.2 | 0.4 ± 0.0 |
Sample | t0 = 1 h | t1 = 24 h | Reduction (%) | Log Reduction |
---|---|---|---|---|
E. coli as Test Organism | ||||
Working culture | 1.6 × 105 | 1.8 × 105 | / | / |
Cotton non-treated | / | 8.3 × 105 | 0 | 0 |
Cotton CBD liposome | / | 1.3 × 105 | 30 | 0.15 |
Cotton CBD oil | / | 1.6 × 105 | 13 | 0.06 |
S. aureusas test organism | ||||
Working culture | 1.5 × 105 | 3.2 × 104 | / | / |
Cotton non-treated | / | 1.1 × 105 | 0 | 0 |
Cotton CBD liposome | / | 5.1 × 103 | 84.4 | 0.81 |
Cotton CBD oil | / | 7.0 × 103 | 78 | 0.67 |
Sample | Desorption Determination (4 h) | ΔA (in %) | Desorption Determination (8 h) | ΔA (in %) |
---|---|---|---|---|
Absorbance (A) | – | Absorbance (A) | – | |
PBS buffer + ABTS | 0.7263 | – | 0.7263 | – |
viscose non-treated | 0.7200 | −0.9 | 0.7150 | −2 |
cotton non-treated | 0.7188 | −1 | 0.7277 | +0.1 |
cotton CBD liposome | 0.6329 | −13 | 0.5244 | −28 |
viscose CBD liposome | 0.6812 | −6 | 0.5143 | −29 |
cotton CBD oil | 0.7000 | −3 | 0.7002 | −3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volmajer Valh, J.; Peršin, Z.; Vončina, B.; Vrezner, K.; Tušek, L.; Fras Zemljič, L. Microencapsulation of Cannabidiol in Liposomes as Coating for Cellulose for Potential Advanced Sanitary Material. Coatings 2021, 11, 3. https://doi.org/10.3390/coatings11010003
Volmajer Valh J, Peršin Z, Vončina B, Vrezner K, Tušek L, Fras Zemljič L. Microencapsulation of Cannabidiol in Liposomes as Coating for Cellulose for Potential Advanced Sanitary Material. Coatings. 2021; 11(1):3. https://doi.org/10.3390/coatings11010003
Chicago/Turabian StyleVolmajer Valh, Julija, Zdenka Peršin, Bojana Vončina, Kaja Vrezner, Lidija Tušek, and Lidija Fras Zemljič. 2021. "Microencapsulation of Cannabidiol in Liposomes as Coating for Cellulose for Potential Advanced Sanitary Material" Coatings 11, no. 1: 3. https://doi.org/10.3390/coatings11010003
APA StyleVolmajer Valh, J., Peršin, Z., Vončina, B., Vrezner, K., Tušek, L., & Fras Zemljič, L. (2021). Microencapsulation of Cannabidiol in Liposomes as Coating for Cellulose for Potential Advanced Sanitary Material. Coatings, 11(1), 3. https://doi.org/10.3390/coatings11010003