Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Surface Materials
2.1.2. Materials of Subbase Layer
2.2. Experimental Program
2.3. Loading Frame Test
2.4. Finite Element Analysis Modeling
3. Results and Discussion
3.1. Different Method of Patching at Different Depths
3.2. Comparison between Laboratory Max Load and FEA Max Load
3.3. Comparison between Laboratory Strain Load and FEA Max Strain
3.4. Comparison between Max Load and Deflection Using FEA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, S.; Singh, B. Cold mix asphalt: An overview. J. Clean. Prod. 2021, 280, 100188. [Google Scholar] [CrossRef]
- Kwon, B.J.; Kim, D.; Rhee, S.K.; Kim, Y.R. Spray injection patching for pothole repair using 100 percent reclaimed asphalt pavement. Constr. Build. Mater. 2018, 166, 445–451. [Google Scholar] [CrossRef]
- Kuo, S.-S.; Carlo, L.; Kuenzel, C. Evaluation of Patching Materials and Placement Techniques for Rigid Pavements and Bridge Decks. 1999. Available online: https://trid.trb.org/view/649075 (accessed on 1 April 2021).
- Asphalt Industry Alliance. Annual Local Authority Road Maintenance Survey; Asphalt Industry Alliance: Bristol, UK, 2020. [Google Scholar]
- Saeed, F.; Rahman, M.; Chamberlain, D.; Collins, P. Asphalt surface damage due to combined action of water and dynamic loading. Constr. Build. Mater. 2019, 196, 530–538. [Google Scholar] [CrossRef]
- Biswas, S.; Hashemian, L.; Hasanuzzaman, M.; Bayat, A. A study on pothole repair in Canada through questionnaire survey and laboratory evaluation of patching materials. Can. J. Civ. Eng. 2016, 43, 443–450. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B.; Zhao, S. Field and laboratory evaluation of winter season pavement pothole patching materials. Int. J. Pavement Eng. 2014, 15, 279–289. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhang, W.; Liu, G.; Dai, L. Investigation of thermal asphalt mastic and mixture to repair potholes. Constr. Build. Mater. 2019, 201, 286–294. [Google Scholar] [CrossRef]
- Liu, M.; Han, S.; Han, X.; Qi, X.; Dong, S. Microcapsule and polymer reinforcement techniques developed asphalt for use of pothole repairs in winter and rainy seasons. Cold Reg. Sci. Technol. 2019, 167, 102865. [Google Scholar] [CrossRef]
- Dong, Q.; Dong, C.; Huang, B. Statistical analyses of field serviceability of throw-and-roll pothole patches. J. Transp. Eng. 2015, 141, 04015017. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B.; Jia, X. Long-term cost-effectiveness of asphalt pavement pothole patching methods. Transp. Res. Rec. J. Transp. Res. Board 2014, 2431, 49–56. [Google Scholar] [CrossRef]
- Hassn, A.; Aboufoul, M.; Wu, Y.; Dawson, A.; Garcia, A. Effect of air voids content on thermal properties of asphalt mixtures. Constr. Build. Mater. 2016, 115, 327–335. [Google Scholar] [CrossRef]
- Obaidi, H.; Gomez-Meijide, B.; Garcia, A. On-site manufacture of hot mix asphalt using pellets that can be melted by induction energy. Powder Technol. 2019, 344, 58–67. [Google Scholar] [CrossRef]
- Obaidi, H. Mechanical and sustainability assessment of induction heatable asphalt tiles and asphalt pellets in road maintenance. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012174. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; Van De Ven, M.; Van Bochove, G.; Van Montfort, J. Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. Constr. Build. Mater. 2012, 29, 403–409. [Google Scholar] [CrossRef]
- Li, S.; Li, H. Repair technology for permanent asphalt pavement potholebased on microwave heating. Guangdong Highw. Commun. 2016, 146, 21–25. [Google Scholar]
- Shi, N. Analysis on sawcut repair of rehabilitating worn asphalt pavement. J. Chongqing Jiaotong Univ. 2006, 25, 62–63. [Google Scholar]
- Jiang, Z. Analysis on the application of circular grooves in pothole repairing of asphalt pavement. J. Highw. Transp. Res. Dev. Appl. Technol. 2017, 13, 131–132. [Google Scholar]
- Li, L.; Huang, Y.; Shao, Z.; Ren, D. An experimental investigation on the repairing performance and fatigue life of asphalt pavement potholes with an inclined interface joint. Front. Mater. 2021, 7, 445. [Google Scholar] [CrossRef]
- Serin, S.; Morova, N.; Saltan, M.; Terzi, S. Investigation of usability of steel fibers in asphalt concrete mixtures. Constr. Build. Mater. 2012, 36, 238–244. [Google Scholar] [CrossRef]
- AL-Ridha, A.S.; Hameed, A.N.; Ibrahim, S.K. Effect of steel fiber on the performance of hot mix asphalt with different temperatures and compaction. Aust. J. Basic Appl. Sci. 2014, 8, 123–132. [Google Scholar]
- Egyptian Code of Practice (ECP). Urban and Rural Roads, 1st ed.; Road Materials and Their Tests (Part Four); Egyptian Code of Practice (ECP): Cairo, Egypt, 2008. [Google Scholar]
- Byzyka, J.; Rahman, M.; Chamberlain, D.A. Thermal analysis of hot mix asphalt pothole repair by finite-element method. J. Transp. Eng. Part B Pavements 2020, 146, 04020029. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.Y.; Ju, J.W.; Yuan, W.; Yang, J.M. Numerical predictions of mechanical behavior of innovative pothole patching materials featuring high toughness, low-viscosity nano-molecular resins. Acta Mech. 2014, 225, 1141–1151. [Google Scholar] [CrossRef]
- Vu, V.T.; Chupin, O.; Piau, J.M.; Hammoum, F. Finite element modelling of partially saturated asphalt specimens subjected to frost—Towards an explanation of winter potholes. Int. J. Pavement Eng. 2020, 1–13. [Google Scholar] [CrossRef]
- Burge, L.M.; Tarhini, K.M.; Frederick, G.R. Investigation of Potholes in Concrete Slab Bridges. In Proceedings of the Eighth International Conference on Computing in Civil and Building Engineering (ICCCBE-VIII), Stanford, CA, USA, 14–16 August 2000; Volume 279, pp. 1054–1061. [Google Scholar]
- Hibbit, D.; Karlsson, B.; Sorensen, P. Getting Started with ABAQUS, Version (6.5). 2005. Available online: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.5/books/gsa/default.htm (accessed on 1 April 2021).
- Hibbitt, D.; Karlsson, B.; Sorenson, P. ABAQUS/Standard User’s Manual, Version (6.2); Hibbitt, Karlsson & Sorensen Inc.: Pawtucket, RI, USA, 2001. [Google Scholar]
Sieve Size | Gradations of Used Mix | Specification Limits (4C) |
---|---|---|
In | ||
1 | 100.0 | 100 |
3/4″ | 96.1 | 80–100 |
1/2″ | 83.0 | - |
3/8″ | 67.3 | 60–80 |
No. 4 | 59.0 | 48–65 |
No. 8 | 40.7 | 35–50 |
No. 30 | 25.3 | 19–30 |
No. 50 | 15.6 | 23–13 |
No. 100 | 11.5 | 7–15 |
No. 200 | 7.5 | 2–8 |
Test No. | Test | AASHTO Designation No. | Results | Specification Limits |
---|---|---|---|---|
1 | Los Angeles abrasion (%) After 100 revolutions After washing after 500 revolutions | T-96 | 6.5% 28% | ≤10% ≤40% |
2 | Water absorption (%) | T-85 | 2.4% | ≤5% |
3 | Bulk specific gravity (g/cm3) | T-85 | 2.576 g/cm3 | - |
Test No. | Test | AASHTO Designation No. | Results | Specification Limits |
---|---|---|---|---|
1 | Penetration, 0.1 mm | T-49 | 64 | 60–70 |
2 | Softening point, 25 °C | T-53 | 52 | 45–55 |
3 | Flash point, 25 °C | T-48 | +270 | >250 |
4 | Kinematic viscosity, cst | T-201 | +345 | >320 |
5 | Ductility, cm | T-51 | 130 | ≥95 |
Test No. | Test | Results | Specification Limits |
---|---|---|---|
1 | Stability (kg) | 1120 | 900 kg (min) |
2 | Flow (mm) | 3.15 | 2–4 mm |
3 | Stiffness (kg/mm) | 389 | 300–500 kg/mm |
4 | Bulk specific gravity, Gmb (g/cm3) | 2.311 | - |
5 | %Air voids in total mix (Va) | 4.4 | 3–5% |
Sieve Size | Gradations of Used Aggregates | Specification Limits |
---|---|---|
No. 30 | 100 | 100 |
No. 50 | 100 | - |
No. 100 | 92 | 85% (min) |
No. 200 | 80 | 65% (min) |
Diameter (mm) | Length (mm) | Aspect Radio | Tensile Strength (MPa) | Material |
---|---|---|---|---|
0.6 | 25 | 58 | ≥1100 | Low carbon steel bar |
Test No. | Test | AASHTO Designation No. | Results | Specification Limits |
---|---|---|---|---|
1 | Los Angeles abrasion (%) After 100 revolutions After washing after 500 revolutions | T-96 | 7% 29% | ≤10% ≤40% |
2 | Water absorption (%) | T-85 | 2.6% | ≤5% |
3 | Bulk specific gravity (g/cm3) | T-85 | 2.77 g/cm3 | - |
Sieve Size | Gradations of Used Aggregates | Specification Limits (4C) |
---|---|---|
In | ||
1 | 100 | 100 |
3/4″ | 100 | 80–100 |
1/2″ | 84 | - |
3/8″ | 71 | 60–80 |
No. 4 | 20 | 48–65 |
No. 8 | 2 | 35–50 |
Name | Dimensions (cm) | Depth of Patching (cm) | Shape of Patching | Patching |
---|---|---|---|---|
A0 | 80 × 80 × 7 | - | Without defects | - |
A1 | 80 × 80 × 7 | 3.5 | Circular | - |
A2 | 80 × 80 × 7 | 5.0 | Circular | - |
A3 | 80 × 80 × 7 | 7.0 | Circular | - |
A4 | 80 × 80 × 7 | 3.5 | Circular | RC + hot mix asphalt |
A5 | 80 × 80 × 7 | 5.0 | Circular | RC + hot mix asphalt |
A6 | 80 × 80 × 7 | 7.0 | Circular | RC + hot mix asphalt |
A7 | 80 × 80 × 7 | 3.5 | Circular | RC + hot mix asphalt + 5% steel fiber |
A8 | 80 × 80 × 7 | 5.0 | Circular | RC + hot mix asphalt + 5% steel fiber |
A9 | 80 × 80 × 7 | 7.0 | Circular | RC + hot mix asphalt + 5% steel fiber |
B1 | 80 × 80 × 7 | 3.5 | Square | - |
B2 | 80 × 80 × 7 | 5.0 | Square | - |
B3 | 80 × 80 × 7 | 7.0 | Square | - |
B4 | 80 × 80 × 7 | 3.5 | Square | RC + hot mix asphalt |
B5 | 80 × 80 × 7 | 5.0 | Square | RC + hot mix asphalt |
B6 | 80 × 80 × 7 | 7.0 | Square | RC + hot mix asphalt |
B7 | 80 × 80 × 7 | 3.5 | Square | RC + hot mix asphalt + 5% steel fiber |
B8 | 80 × 80 × 7 | 5.0 | Square | RC + hot mix asphalt + 5% steel fiber |
B9 | 80 × 80 × 7 | 7.0 | Square | RC + hot mix asphalt + 5% steel fiber |
Gauge length | 6 mm |
Gauge factor | 2.12 ± 1% |
Gauge resistance | 120.3 ± 5 Ω |
Transverse sensitivity | 0.1% |
Layer | Density (N/mm3) | Modulus of Elasticity (E) (MPa) | Poisson’s Ratio (υ) |
Wiring layer | 2.24 | 2700 | 0.35 |
Base layer | 2.08 | 530 | 0.37 |
Patching Material | Density | Modulus of Elasticity (E) | Poisson’s Ratio (υ) |
HMA | 2.24 | 2700 | 0.35 |
HMA + steel fiber | 2.47 | 3700 | 0.33 |
Sample | Max Load Exp. (kN) | Max Load FEA (kN) | Difference (%) |
---|---|---|---|
A0 | 22.70 | 22.00 | 3.08 |
A1 | 14.84 | 14.20 | 4.31 |
A2 | 13.81 | 13.15 | 4.78 |
A3 | 13.20 | 12.99 | 1.61 |
A4 | 25.60 | 24.90 | 2.73 |
A5 | 27.40 | 27.175 | 0.82 |
A6 | 29.77 | 28.25 | 5.11 |
A7 | 29.17 | 27.92 | 4.30 |
A8 | 33.20 | 29.85 | 10.10 |
A9 | 34.00 | 29.92 | 12.00 |
B1 | 22.50 | 21.12 | 6.11 |
B2 | 20.60 | 20.26 | 1.67 |
B3 | 18.40 | 18.88 | 2.59 |
B4 | 29.80 | 28.98 | 2.77 |
B5 | 39.90 | 41.44 | 3.87 |
B6 | 54.56 | 52.34 | 4.06 |
B7 | 33.60 | 31.57 | 6.05 |
B8 | 46.00 | 44.88 | 2.44 |
B9 | 59.20 | 57.27 | 3.26 |
% Mean Difference | 4.30% |
Sample | Max Strain Exp. (μm/mm) | Max Strain FEA (μm/mm) |
---|---|---|
A0 | 0.138 | 0.114 |
A1 | 0.024 | 0.028 |
A2 | 0.022 | 0.023 |
A3 | 0.021 | 0.021 |
A4 | 0.026 | 0.029 |
A5 | 0.031 | 0.030 |
A6 | 0.037 | 0.034 |
A7 | 0.029 | 0.029 |
A8 | 0.034 | 0.033 |
A9 | 0.036 | 0.035 |
B1 | 0.137 | 0.137 |
B2 | 0.123 | 0.116 |
B3 | 0.126 | 0.107 |
B4 | 0.146 | 0.121 |
B5 | 0.132 | 0.128 |
B6 | 0.125 | 0.129 |
B7 | 0.143 | 0.138 |
B8 | 0.132 | 0.128 |
B9 | 0.137 | 0.141 |
Sample | Load (kN) | Deflection (mm) |
---|---|---|
A0 | 22.00 | 0.13 |
A1 | 14.20 | 0.16 |
A2 | 13.15 | 0.18 |
A3 | 12.99 | 0.18 |
A4 | 24.90 | 0.16 |
A5 | 27.18 | 0.15 |
A6 | 28.25 | 0.21 |
A7 | 27.92 | 0.17 |
A8 | 29.85 | 0.19 |
A9 | 29.92 | 0.21 |
B1 | 21.13 | 0.24 |
B2 | 20.26 | 0.29 |
B3 | 18.88 | 0.32 |
B4 | 28.98 | 0.27 |
B5 | 41.44 | 0.28 |
B6 | 52.35 | 0.39 |
B7 | 31.57 | 0.29 |
B8 | 44.88 | 0.30 |
B9 | 57.27 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisa, M.S.; Abdelhaleem, F.S.; Khater, V.A. Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive. Coatings 2021, 11, 1160. https://doi.org/10.3390/coatings11101160
Eisa MS, Abdelhaleem FS, Khater VA. Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive. Coatings. 2021; 11(10):1160. https://doi.org/10.3390/coatings11101160
Chicago/Turabian StyleEisa, Mohamed S., Fahmy S. Abdelhaleem, and Vivian A. Khater. 2021. "Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive" Coatings 11, no. 10: 1160. https://doi.org/10.3390/coatings11101160
APA StyleEisa, M. S., Abdelhaleem, F. S., & Khater, V. A. (2021). Experimental and Numerical Investigation of Load Failure at the Interface Joint of Repaired Potholes Using Hot Mix Asphalt with Steel Fiber Additive. Coatings, 11(10), 1160. https://doi.org/10.3390/coatings11101160