Shape Characterizing of Aggregates Produced through Different Crushing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Capturing System
2.2. Image Processing and Analysis
3. Results and Discussion
3.1. Basic Engineering Properties of the Aggregates
3.2. Shape Parameters of Aggregates from Impact and Jaw Crusher through Digital Image Processing Approach
3.3. Effect of Statistical Analysis on Shape Parameters, Types of Crusher and Marshall Stability of Hot Mix Asphalt
4. Conclusions
- Digital Image Processing (DIP) is a valuable technique to determine the physical shape parameters of aggregates. Image processing results can effectively be used to classify aggregates into spherical, elongated, and flat particles along with quantification of shape, angularity, and surface texture of aggregates.
- Characterization of aggregate samples based on Image-J Software collected from various sources revealed that the influence of the type of crusher is significant with the most appropriate MJC, MIC, and USIC, respectively. The physical and mechanical properties of aggregates change significantly by varying the crushing technique.
- The Marshall stability is significantly changing with aggregate shapes and types of crushers. Initially, it indicates the highest value for spherical aggregates from all crushers and queries, decreasing from a mix, elongated, flat and elongated, and flat shape, respectively. The spherical shape contains the highest values due to optimum packing with the least air voids and comparably most appropriate shaper parameters.
- Investigating the effects of crushing techniques for developing linear correlation, it has been concluded that shape parameters are correlated with different sieve sizes and types of crushers, while MJC indicated the most appropriate results.
- This research will act as guidelines for the industry in the production of aggregates to improve the quality by implementing the proposed crushing technique (jaw crushing). The appropriate shape parameters values will help increase the flexible pavement load resistance by influencing the mechanical properties of aggregates.
5. Future Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Zhang, C.; Xiao, P.; Wu, Z. Evaluation of coarse aggregate morphological characteristics affecting performance of heavy-duty asphalt pavements. Constr. Build. Mater. 2019, 225, 170–181. [Google Scholar] [CrossRef]
- Valdes-Vidal, G.; Calabi-Floody, A.; Sanchez-Alonso, E.; Miro, R. Effect of aggregate type on the fatigue durability of asphalt mixtures. Constr. Build. Mater. 2019, 224, 124–131. [Google Scholar] [CrossRef]
- Cui, P.; Xiao, Y.; Yan, B.; Li, M.; Wu, S. Morphological characteristics of aggregates and their influence on the performance of asphalt mixture. Constr. Build. Mater. 2018, 186, 303–312. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Bu, Y.; You, Z.; Hasan, M.R.M.; Irfan, M. Effects of coarse aggregate angularity on the microstructure of asphalt mixture. Constr. Build. Mater. 2018, 183, 472–484. [Google Scholar] [CrossRef]
- Gong, F.; Liu, Y.; Zhou, X.; You, Z. Lab assessment and discrete element modeling of asphalt mixture during compaction with elongated and flat coarse aggregates. Constr. Build. Mater. 2018, 182, 573–579. [Google Scholar] [CrossRef]
- Ding, X.; Ma, T.; Gao, W. Morphological characterization and mechanical analysis for coarse aggregate skeleton of asphalt mixture based on discrete-element modeling. Constr. Build. Mater. 2017, 154, 1048–1061. [Google Scholar] [CrossRef]
- Xie, X.; Lu, G.; Liu, P.; Wang, D.; Fan, Q.; Oeser, M. Evaluation of morphological characteristics of fine aggregate in asphalt pavement. Constr. Build. Mater. 2017, 139, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Nair, H.; Stephen Lane, D.; Wang, L. Quantification of aggregate morphologic characteristics as related to mechanical properties of asphalt concrete with improved FTI system. J. Mater. Civ. Eng. 2016, 28, 04016046. [Google Scholar] [CrossRef]
- Topal, A.; Sengoz, B. Determination of fine aggregate angularity in relation with the resistance to rutting of hot-mix asphalt. Constr. Build. Mater. 2005, 19, 155–163. [Google Scholar] [CrossRef]
- McNally, G.; Branagan, D. An overview of the engineering geology of the Botany Basin. In Environmental Geology of the Botany Basin; McNally, G.H., Jankowski, J., Eds.; Conference Publications: Sydney, Australia, 1998; pp. 1–23. [Google Scholar]
- Li, Y.; Onasch, C.M.; Guo, Y. GIS-based detection of grain boundaries. J. Struct. Geol. 2008, 30, 431–443. [Google Scholar] [CrossRef]
- Neham, S.; Ali, R.; Ashour, H. Evaluation of hot mix asphalt resilient modulus based on aggregate morphological properties. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012002. [Google Scholar]
- Hafeez, I.; Juniad, F.; Kamal, M.; Hussain, J. Influence of single-and two-stage aggregate manufacturing mechanisms on asphalt mixture performance. J. Mater. Civ. Eng. 2016, 28, 04015180. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Koutsovitis, P.; Damoulianou, M.-E.; Koukouzas, N. Petrographic characteristics of sandstones as a basis to evaluate their suitability in construction and energy storage applications. A case study from Klepa Nafpaktias (central western Greece). Energies 2020, 13, 1119. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, A.U.; Erdem, R.T.; Kozanoglu, C. Investigation of crushing type of concrete aggregates on mechanical properties of concrete. Int. J. Mater. Eng. 2012, 2, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, M.; Valdes, J.; Palomino, A.; Santamarina, J.C. Aggregate production: Fines generation during rock crushing. Int. J. Miner. Process. 2007, 81, 237–247. [Google Scholar] [CrossRef]
- Bessa, I.S.; Branco, V.T.C.; Soares, J.B.; Neto, J.A.N. Aggregate shape properties and their influence on the behavior of hot-mix asphalt. J. Mater. Civ. Eng. 2015, 27, 04014212. [Google Scholar] [CrossRef]
- Rafiq, W.; Napiah, M.; Habib, N.Z.; Sutanto, M.H.; Alaloul, W.S.; Khan, M.I.; Musarat, M.A.; Memon, A.M. Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology. Constr. Build. Mater. 2021, 291, 123288. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiahet, M.; Sutanto, M.; Alaloul, W.; Yusoff, N.I.M.; Khan, M.I.; Saeed, S.M. Physicochemical, rheological and microstructural properties of Nano-Silica modified Bio-Asphalt. Constr. Build. Mater. 2021, 297, 123772. [Google Scholar] [CrossRef]
- Leon, L.P.; Gay, D. Gene expression programming for evaluation of aggregate angularity effects on permanent deformation of asphalt mixtures. Constr. Build. Mater. 2019, 211, 470–478. [Google Scholar] [CrossRef]
- BS 812-105. Methods for Determination of Particle Shape; BSI: London, UK, 1989; p. 10. [Google Scholar]
- Roberts, F.L. Hot Mix Asphalt Materials, Mixture Desgin, and Construction; NAPA Education Foundation: Napa, CA, USA, 1996. [Google Scholar]
- Mangulkar, M.N.; Jamkar, S.S. Digital image processing based system for the characterization of coarse aggregates. Jordan J. Civ. Eng. 2016, 10, 1. [Google Scholar] [CrossRef]
- Masad, E.; Sivakumar, K. Advances in the characterization and modeling of civil engineering materials using imaging techniques. J. Comput. Civ. Eng. 2004, 18, 1. [Google Scholar] [CrossRef]
- Arasan, S.; Hasiloglu, A.S.; Akbulut, S. Shape Properties of Natural and Crushed Aggregate Using Image Analysis. Int. J. Civ. Struct. Eng. 2010, 1, 221–233. [Google Scholar]
- Polat, R.; Yadollahi, M.M.; Sagsoz, A.E.; Arasan, S. The correlation between aggregate shape and compressive strength of concrete: Digital image processing approach. Int. J. Struct. Civ. Eng. Res. 2013, 2, 63–80. [Google Scholar]
- Barksdale, R.D.; Kemp, M.A.; Sheffield, W.J.; Hubbard, J.L. Measurement of aggregate shape, surface area, and roughness. Transp. Res. Rec. 1991, 1301, 107–116. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Arasan, S.; Yenera, E.; Hattatoglu, F.; Hinislioglua, S.; Akbuluta, S. Correlation between shape of aggregate and mechanical properties of asphalt concrete: Digital image processing approach. Road Mater. Pavement Des. 2011, 12, 239–262. [Google Scholar] [CrossRef]
- Bish, D.L.; Blake, D.; Vaniman, D.; Chipera, S.; Morris, R.; Ming, D.; Treiman, A.; Sarrazin, P.; Morrison, S.; Downs, R.T. X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science 2013, 341, 1238932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-Y.; Freeman, R.B. Imaging indices for quantification of shape, angularity, and surface texture of aggregates. Transp. Res. Rec. 2000, 1721, 57–65. [Google Scholar] [CrossRef]
- Nowoświat, A.; Sorociak, W.; Żuchowski, R. The impact of the application of thin emulsion mat microsurfacing on the level of noise in the environment. Constr. Build. Mater. 2020, 263, 120626. [Google Scholar] [CrossRef]
- Freitas, E.; Pereira, P.; de Picado-Santos, L.; Santos, A. Traffic noise changes due to water on porous and dense asphalt surfaces. Road Mater. Pavement Des. 2009, 10, 587–607. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D. Effect of synthetic fibers and hydrated lime in porous asphalt mixture using multi-criteria decision-making techniques. Materials 2020, 13, 675. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.; Hafeez, I.; Ullah, R. Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures. Constr. Build. Mater. 2020, 235, 117496. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Salaheen, M.A.; Malkawi, A.B.; Alzubi, K.; Al-Sabaeei, A.M.; Musarat, M.A. Utilizing of oil shale ash as a construction material: A systematic review. Constr. Build. Mater. 2021, 299, 123844. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Frost, J.; Lai, J.; Wang, L. Three-dimensional image analysis of aggregate particles from orthogonal projections. Transp. Res. Rec. 1996, 1526, 98–103. [Google Scholar] [CrossRef]
- Fletcher, T.; Chandan, C.; Masad, E.; Sivakumar, K. Measurement of aggregate texture and its influence on hot mix asphalt (HMA) permanent deformation. J. Test. Eval. 2002, 30, 524–531. [Google Scholar]
- Stempkowska, A.; Gawenda, T.; Naziemiec, Z.; Adam Ostrowski, K.; Saramak, D.; Surowiak, A. Impact of the geometrical parameters of dolomite coarse aggregate on the thermal and mechanic properties of preplaced aggregate concrete. Materials 2020, 13, 4358. [Google Scholar] [CrossRef]
- Jaya, R.P.; Hassan, N.A.; Mahmud, M.Z.H.; Aziz, M.M.A.; Hamzah, M.O.; Wan, C.N.C. Effect of aggregate shape on the properties of asphaltic concrete AC14. J. Teknol. 2014, 71, 3. [Google Scholar]
- Rajan, B.; Singh, D. Comparison of shape parameters and laboratory performance of coarse aggregates produced from different types of crushing operations. J. Mater. Civ. Eng. 2017, 29, 04017044. [Google Scholar] [CrossRef]
- Li, L.; Guo, M.; Zeng, C. Influence of the Chemical Composition of asphalt and the 3D morphology of the aggregate on contact surface adhesion. Adv. Civ. Eng. 2021, 2021, 8870295. [Google Scholar]
- Ferreira, T.; Rasband, W. ImageJ user guide. ImageJ/Fiji 2012, 1, 155–161. [Google Scholar]
- Adiseshu, G.; Naidu, G. Influence of coarse aggregate shape factors on bituminous mixtures. Int. J. Eng. Res. Appl. (IJERA) 2011, 1, 2013–2014. [Google Scholar]
Type of Crushers | Mass of Aggregates for Each Sieve Size (Kg) | ||||
---|---|---|---|---|---|
37.5–25 (mm) | 25–19.5 (mm) | 19.5–12.5 (mm) | 12.5–9.5 (mm) | 9.5–4.75 (mm) | |
USIC | 15 | 5 | 2 | 1 | 0.5 |
MIC | 15 | 5 | 2 | 1 | 0.5 |
MJC | 15 | 5 | 2 | 1 | 0.5 |
Aggregate Source | Sieve Size (mm) | Spherical Aggregates (%) | Flat Aggregates (%) | Elongated Aggregates (%) | Flat and Elongated Aggregates (%) |
---|---|---|---|---|---|
USIC | 37.5–25 | 54 | 14 | 9 | 23 |
MIC | 51 | 16 | 10 | 24 | |
MJC | 48 | 17 | 11 | 26 | |
USIC | 25–19.5 | 53 | 13 | 9 | 26 |
MIC | 50 | 14 | 8 | 27 | |
MJC | 48 | 12 | 13 | 27 | |
USIC | 19.5–12.5 | 50 | 16.5 | 12.5 | 21 |
MIC | 56 | 17 | 10 | 17 | |
MJC | 48 | 14 | 14 | 24 | |
USIC | 12.5–9.5 | 42 | 18 | 13 | 27 |
MIC | 44 | 16 | 12 | 28 | |
MJC | 39 | 17 | 14 | 30 | |
USIC | 9.5–4.75 | 40 | 24 | 8 | 28 |
MIC | 38 | 20 | 11 | 31 | |
MJC | 43 | 17 | 7 | 33 |
Sieve Size (mm) | 19.0 | 12.5 | 9.5 | 4.75 | 2.0 | 0.475 | 0.177 | 0.075 |
---|---|---|---|---|---|---|---|---|
Passing (%) by Weight (Mix Aggregates) | 5 | 20 | 26 | 16 | 12 | 10 | 6 | 5 |
Passing (%) by Weight (Spherical) | 4 | 21 | 24 | 14 | 11 | 11 | 8 | 7 |
Passing (%) by Weight (Flate) | 3 | 23 | 22 | 16 | 11 | 13 | 7 | 5 |
Passing (%) by Weight (Elongated) | 6 | 18 | 23 | 15 | 12 | 11 | 7 | 8 |
Passing (%) by Weight (Flat and Elongated) | 5 | 20 | 22 | 16 | 13 | 10 | 8 | 6 |
Aggregate Source and Crusher Type | Sieve Sizes (mm) | Shape of Particles | Code |
---|---|---|---|
Ubhan Shah Impact Crusher (USIC) Rahim Yar Khan | 37.5–25.0 | Mix(M) | 1 |
Spherical(S) | 2 | ||
Flat(F) | 3 | ||
Elongated(E) | 4 | ||
Flat and Elongated(F&E) | 5 | ||
25.0–19.5 | Mix(M) | 6 | |
Spherical(S) | 7 | ||
Flat(F) | 8 | ||
Elongated(E) | 9 | ||
Flat and Elongated(F&E) | 10 | ||
Margalla Impact Crusher (MIC) Islamabad | 19.5–12.5 | Mix(M) | 11 |
Spherical(S) | 12 | ||
Flat(F) | 13 | ||
Elongated(E) | 14 | ||
Flat and Elongated(F&E) | 15 | ||
Margalla Jaw Crusher (MJC) Islamabad | 12.5–9.5 | Mix(M) | 16 |
Spherical(S) | 17 | ||
Flat(F) | 18 | ||
Elongated(E) | 19 | ||
Flat and Elongated(F&E) | 20 | ||
9.5–4.75 | Mix(M) | 21 | |
Spherical(S) | 22 | ||
Flat(F) | 23 | ||
Elongated(E) | 24 | ||
Flat and Elongated(F&E) | 25 |
Code | Aspect Ratio | Shape Factor | Form Factor | Sphericity | Roundness | Angularity Index | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USIC | MIC | MJC | USIC | MIC | MJC | USIC | MIC | MJC | USIC | MIC | MJC | USIC | MIC | MJC | USIC | MIC | MJC | |
1 | 1.27 | 1.19 | 1.29 | 0.61 | 0.68 | 0.70 | 0.73 | 0.59 | 0.76 | 0.67 | 0.73 | 0.83 | 0.67 | 0.73 | 0.76 | 1.19 | 1.23 | 1.34 |
2 | 1.20 | 1.24 | 1.28 | 0.72 | 0.71 | 0.68 | 0.76 | 0.76 | 0.71 | 0.84 | 0.86 | 0.80 | 0.84 | 0.81 | 0.78 | 1.32 | 1.32 | 1.42 |
3 | 1.20 | 1.33 | 1.41 | 0.44 | 0.40 | 0.30 | 0.72 | 0.71 | 0.65 | 0.70 | 0.69 | 0.58 | 0.84 | 0.76 | 0.72 | 1.40 | 1.41 | 1.56 |
4 | 2.09 | 1.98 | 2.28 | 0.45 | 0.44 | 0.41 | 0.64 | 0.62 | 0.86 | 0.55 | 0.57 | 0.49 | 0.48 | 0.51 | 0.45 | 1.56 | 1.60 | 1.71 |
5 | 1.87 | 1.68 | 1.73 | 0.42 | 0.51 | 0.54 | 0.62 | 0.67 | 0.67 | 0.54 | 0.62 | 0.60 | 0.54 | 0.60 | 0.59 | 1.61 | 1.51 | 1.49 |
6 | 1.16 | 1.17 | 1.21 | 0.64 | 0.66 | 0.56 | 0.63 | 0.71 | 0.65 | 0.76 | 0.65 | 0.76 | 0.64 | 0.70 | 0.71 | 1.39 | 1.29 | 1.51 |
7 | 1.20 | 1.23 | 1.26 | 0.74 | 0.76 | 0.46 | 0.68 | 0.78 | 0.67 | 0.86 | 0.85 | 0.78 | 0.84 | 0.80 | 0.81 | 1.49 | 1.32 | 1.54 |
8 | 1.32 | 1.35 | 1.31 | 0.39 | 0.32 | 0.33 | 0.69 | 0.76 | 0.69 | 0.89 | 0.60 | 0.60 | 0.77 | 0.75 | 0.78 | 1.46 | 1.34 | 1.47 |
9 | 1.97 | 1.93 | 2.34 | 0.53 | 0.54 | 0.49 | 0.64 | 0.62 | 0.86 | 0.59 | 0.62 | 0.54 | 0.51 | 0.55 | 0.43 | 1.56 | 1.66 | 1.70 |
10 | 1.47 | 1.74 | 1.78 | 0.47 | 0.54 | 0.46 | 0.69 | 0.70 | 0.63 | 0.63 | 0.63 | 0.51 | 0.68 | 0.58 | 0.57 | 1.46 | 1.44 | 1.64 |
11 | 1.31 | 1.32 | 1.42 | 0.67 | 0.64 | 0.67 | 0.69 | 0.71 | 0.65 | 0.76 | 0.76 | 0.74 | 0.71 | 0.73 | 0.72 | 1.37 | 1.39 | 1.43 |
12 | 1.34 | 1.36 | 1.44 | 0.70 | 0.66 | 0.63 | 0.71 | 0.73 | 0.67 | 0.79 | 0.78 | 0.75 | 0.76 | 0.75 | 0.71 | 1.42 | 1.38 | 1.42 |
13 | 1.45 | 1.41 | 1.30 | 0.34 | 0.32 | 0.28 | 0.66 | 0.72 | 0.71 | 0.60 | 0.58 | 0.58 | 0.71 | 0.71 | 0.79 | 1.53 | 1.40 | 1.41 |
14 | 2.24 | 2.23 | 1.25 | 0.50 | 0.45 | 0.50 | 0.61 | 0.61 | 0.50 | 0.55 | 0.53 | 0.46 | 0.45 | 0.46 | 0.45 | 1.65 | 1.66 | 1.90 |
15 | 1.68 | 1.72 | 1.82 | 0.38 | 0.42 | 0.67 | 0.66 | 0.67 | 0.67 | 0.57 | 0.58 | 0.56 | 0.60 | 0.58 | 0.57 | 1.54 | 1.50 | 1.50 |
16 | 1.21 | 1.25 | 1.27 | 0.71 | 0.61 | 0.72 | 0.71 | 0.73 | 0.71 | 0.79 | 0.73 | 0.71 | 0.73 | 0.72 | 0.75 | 1.35 | 1.31 | 1.33 |
17 | 1.29 | 1.27 | 1.26 | 0.76 | 0.63 | 0.70 | 0.73 | 0.75 | 0.75 | 0.82 | 0.78 | 0.81 | 0.78 | 0.80 | 0.81 | 1.39 | 1.33 | 1.43 |
18 | 1.33 | 1.43 | 1.30 | 0.36 | 0.35 | 0.31 | 0.64 | 0.70 | 0.73 | 0.64 | 0.61 | 0.60 | 0.76 | 0.70 | 0.78 | 1.58 | 1.43 | 1.34 |
19 | 2.67 | 2.27 | 2.20 | 0.49 | 0.43 | 0.37 | 0.54 | 0.62 | 0.58 | 0.51 | 0.51 | 0.50 | 0.39 | 0.45 | 0.44 | 1.88 | 1.61 | 1.74 |
20 | 1.79 | 1.86 | 1.69 | 0.43 | 0.41 | 0.45 | 0.67 | 0.62 | 0.66 | 0.59 | 0.57 | 0.60 | 0.56 | 0.54 | 0.60 | 1.51 | 1.64 | 1.52 |
21 | 1.33 | 1.15 | 1.24 | 0.73 | 0.61 | 0.59 | 0.71 | 0.73 | 0.74 | 0.76 | 0.76 | 0.7 | 0.742 | 0.8 | 0.81 | 1.41 | 1.34 | 1.39 |
22 | 1.37 | 1.18 | 1.20 | 0.71 | 0.62 | 0.57 | 0.72 | 0.75 | 0.77 | 0.78 | 0.75 | 0.78 | 0.74 | 0.85 | 0.83 | 1.40 | 1.33 | 1.30 |
23 | 1.52 | 1.29 | 1.19 | 0.26 | 0.32 | 0.34 | 0.68 | 0.75 | 0.75 | 0.55 | 0.61 | 0.64 | 0.67 | 0.79 | 0.85 | 1.48 | 1.33 | 1.34 |
24 | 2.32 | 2.40 | 2.48 | 0.46 | 0.47 | 0.50 | 0.61 | 0.59 | 0.59 | 0.55 | 0.53 | 0.53 | 0.44 | 0.42 | 0.41 | 1.65 | 1.71 | 1.71 |
25 | 1.94 | 2.07 | 1.73 | 0.42 | 0.44 | 0.44 | 0.64 | 0.68 | 0.66 | 0.57 | 0.57 | 0.58 | 0.52 | 0.49 | 0.52 | 1.58 | 1.47 | 1.52 |
Test Title | MIC | MJC | USIC |
---|---|---|---|
Type of rock | Calcium carbonate | Calcium carbonate | Granite |
Flakiness Index (%) | 9.8 | 9.2 | 10.8 |
Shape Index (%) | 13.65 | 12.64 | 15.7 |
Fractured Particles (%) | 100 | 100 | 100 |
Sand Equivalent Value (%) | 73 | 71 | 74 |
Log Angles Abrasion (%) | 20.23 | 19.1 | 21.43 |
Water Absorption (%) | 0.97 | 0.94 | 1.02 |
(a) | |||||
---|---|---|---|---|---|
Test Title | Mix | Spherical | Flat | Elongated | Flat and Elongated |
Marshall Stability (kg) | 1456.67 | 1563.67 | 1226.56 | 1207.34 | 1145.59 |
Flow value (0.25 mm) | 2.41 | 2.70 | 2.17 | 2.18 | 2.05 |
Air voids (%) | 3.48 | 3.41 | 3.49 | 4.11 | 3.56 |
Density (g/cm3) | 2.467 | 2.479 | 2.455 | 2.457 | 2.466 |
VFA (%) | 76.53 | 77.63 | 75.94 | 74.56 | 75.36 |
VMA (%) | 14.85 | 14.41 | 14.31 | 14.71 | 14.16 |
OBC (%) | 4.12 | 3.98 | 4.23 | 4.34 | 4.51 |
(b) | |||||
Test Title | Mix | Spherical | Flat | Elongated | Flat and Elongated |
Marshall Stability (kg) | 1424.13 | 1489.56 | 1213.97 | 1237.34 | 1132.59 |
Flow value (0.25 mm) | 2.41 | 2.69 | 2.17 | 2.11 | 2.01 |
Air voids (%) | 3.39 | 3.42 | 3.28 | 4.13 | 3.16 |
Density (g/cm3) | 2.469 | 2.479 | 2.461 | 2.457 | 2.459 |
VFA (%) | 76.23 | 78.13 | 75.94 | 73.56 | 77.36 |
VMA (%) | 14.25 | 14.57 | 14.11 | 14.31 | 14.17 |
OBC (%) | 4.17 | 3.96 | 4.53 | 4.59 | 4.61 |
(c) | |||||
Test Title | Mix | Spherical | Flat | Elongated | Flat and Elongated |
Marshall Stability (kg) | 1473.17 | 1552.37 | 1277.16 | 1287.14 | 1176.57 |
Flow value (0.25 mm) | 2.35 | 2.67 | 2.19 | 2.16 | 1.98 |
Air voids (%) | 3.45 | 3.38 | 3.42 | 4.03 | 3.36 |
Density (g/cm3) | 2.467 | 2.475 | 2.465 | 2.451 | 2.456 |
VFA (%) | 75.53 | 77.23 | 75.34 | 72.56 | 76.36 |
VMA (%) | 14.35 | 14.47 | 14.31 | 14.81 | 14.10 |
OBC (%) | 4.07 | 3.95 | 4.34 | 4.41 | 4.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, G.; Alaloul, W.S.; Hafeez, I.; Qureshi, A.H. Shape Characterizing of Aggregates Produced through Different Crushing Techniques. Coatings 2021, 11, 1199. https://doi.org/10.3390/coatings11101199
Yaseen G, Alaloul WS, Hafeez I, Qureshi AH. Shape Characterizing of Aggregates Produced through Different Crushing Techniques. Coatings. 2021; 11(10):1199. https://doi.org/10.3390/coatings11101199
Chicago/Turabian StyleYaseen, Ghulam, Wesam Salah Alaloul, Imran Hafeez, and Abdul Hannan Qureshi. 2021. "Shape Characterizing of Aggregates Produced through Different Crushing Techniques" Coatings 11, no. 10: 1199. https://doi.org/10.3390/coatings11101199
APA StyleYaseen, G., Alaloul, W. S., Hafeez, I., & Qureshi, A. H. (2021). Shape Characterizing of Aggregates Produced through Different Crushing Techniques. Coatings, 11(10), 1199. https://doi.org/10.3390/coatings11101199