Wear Behavior of Borided Cold-Rolled High Manganese Steel
Abstract
:1. Introduction
Novelty of the Work
2. Materials and Methods
3. Results and Discussions
3.1. Microstructural Characterization and XRD Analysis
3.2. Thicknesses of Boride Layers and Microhardness
3.3. Diffusion Kinetics
3.4. Rockwell-C Adhesion Properties
3.5. Roughness, COF and Reciprocating Dry Sliding Wear Tests
4. Conclusions
- Fe2B, FeB, MnB, and SiC phases were determined on the surfaces of borided HMS. Although FeB was not observed at 850 and 900 °C in SEM micrographs, XRD results proved that FeB existed. One of the stunning results was that saw-tooth morphology was unexpectedly observed at the surface of borided HMS. SRZ was detected by using EDX mapping and the formation of SRZ was named as the compact transfer of silicones (CTS). The thicknesses of the boride layers on the surface of HMS range from 31.41 to 117.65 µm, depending on boriding temperature and time. The thickness results show that Mn enhanced the boron diffusion in steel. Diffusion kinetic results support this analysis. The hardness also increases with the new phases formed. According to the Daimler-Benz adhesion test, the adhesion quality of all borided HMS is acceptable (HF1 and HF2). Contrary to previous studies, high silicon content did not cause the “egg-shell effect”. It was also detected that MnS formed on the surface of HMS during boriding.
- The COF and roughness value of the BM were lower than borided HMS. A small number of wear damages were observed, such as oxide layer delamination, micro-cracks and surface fatigue causing pits to occur on the surface of the borided HMS. Delamination, micro-cracks, wear debris, and groove was detected on the surface of BM. The results of this study indicate that boriding allows a longer service life and increases the wear resistance of HMS. All borided HMS showed lower wear and rate higher wear resistance for all wear test conditions than BM. Therefore, the boriding process extends the service life of HMS components which are used in oil drilling, mining processes, defense and various other industries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, T.; Shi, W.; Liu, R.; Lin, L.; Yang, H.; Li, L.; Shahzad, B. Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application. J. Iron Steel Res. Int. 2020, 27, 1200–1211. [Google Scholar] [CrossRef]
- Jin, X.; Zhong, Y.; Wang, L.; Wang, H. Effect of annealing temperature on the surface and subsurface microstructure of Al-added TWIP steel. Surf. Coat. Technol. 2020, 386, 125479. [Google Scholar] [CrossRef]
- Surzhenkov, A.; Goljandin, D.; Traksmaa, R.; Viljus, M.; Talviste, K.; Aruniit, A.; Latokartano, J.; Kulu, P. High Temperature Erosion Wear of Cermet Particles Reinforced Self-Fluxing Alloy HVOF Sprayed Coatings. Mater. Sci. 2015, 21, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.H.; Peng, H.B.; Si, H.T.; Xiong, R.L.; Raabe, D. A novel high manganese austenitic steel with higher work hardeningcapacity and much lower impact deformation than Hadfield manganese steel. Mater. Des. 2014, 55, 798–804. [Google Scholar] [CrossRef]
- The Science of Armour Materials. In Armour Steels; Woodhead Publishing: Sawston, UK, 2017; pp. 55–115.
- Yue, X.; Wasson, A.J.; Anderson, T.D.; Ma, N.; Fairchild, D.P.; Jin, H. Welding Technology Development for an Erosion-Resistant Slurry Pipeline Steel: An investigation into the welding technology enabling the deployment of an erosion-resistant pipeline steel in the oil sands mining industry to achieve significant cost savings. Weld. J. 2018, 97, 229–242. [Google Scholar]
- Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals. J. Miner. Met. Mater. Soc. 2018, 70, 680–690. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U.; Neumann, P. Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purpose. ISIJ Int. 2003, 43, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Benzing, J.T.; Poling, W.A.; Pierceb, D.T.; Bentley, J.; Findley, K.O.; Raabe, D.; Wittig, J.E. Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Mater. Sci. Eng. A 2018, 711, 78–92. [Google Scholar] [CrossRef]
- Franceschi, M.; Pezzato, L.; Gennari, C.; Fabrizi, A.; Polyakova, M.; Konstantinov, D.; Brunelli, K.; Dabalà, M. Effect of Intercritical Annealing and Austempering on the Microstructure and Mechanical Properties of a High Silicon Manganese Steel. Met. 2020, 10, 1448. [Google Scholar]
- Keddam, M.; Jurci, P. Simulating the Growth of Dual-Phase Boride Layer on AISI M2 Steel by Two Kinetic Approaches. Coatings 2021, 11, 433. [Google Scholar] [CrossRef]
- Kayali, Y.; Anaturk, B. Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel. Mater. Des. 2013, 46, 776–783. [Google Scholar] [CrossRef]
- Kayali, Y.; Barut, N.; Talaş, Ş.; Büyüksağiş, A. Investigation of corrosion and wear behavior of borided AISI P20 steel in micro-wave furnace. Mater. Res. Express 2019, 6, 016421. [Google Scholar] [CrossRef]
- Duran, H.; Özkan, D.; Karaoğlanlı, A.C. Investigation of Microstructure, Wear and Mechanical Properties of Boronized Inconel 718 Superalloy. Karaelmas Sci. Eng. J. 2021, 11, 61–72. [Google Scholar]
- Krelling, A.P.; Teixeira, F.; da Costa, C.E.; dos Santos de Almeida, E.A.; Zappelino, B.; Milan, J.C.G. Microabrasive wear behavior of borided steel abraded by SiO2 particles. J. Mater. Res. Technol. 2019, 8, 766–776. [Google Scholar] [CrossRef]
- Cimenoglu, H.; Atar, E.; Motallebzadeh, A. High temperature tribological behaviour of borided surfaces based on the phase structure of the boride layer. Wear 2014, 309, 152–158. [Google Scholar] [CrossRef]
- Gök, M.S.; Küçük, Y.; Erdoğan, A.; Öge, M.; Kanca, E.; Günen, A. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surf. Coat. Technol. 2017, 328, 54–62. [Google Scholar] [CrossRef]
- Mertgenc, E.; Kesici, O.F.; Kayali, Y. Investigation of wear properties of borided austenitic stainless steel different temperatures and times. Mater. Res. Express 2019, 6, 076420. [Google Scholar] [CrossRef]
- Panda, J.N.; Wong, B.C.; Medvedovski, E.; Egberts, P. Enhancement of tribo-corrosion performance of carbon steel through boronizing and BN-based coatings. Tribol. Int. 2021, 153, 106666. [Google Scholar] [CrossRef]
- da Costa Aichholz, S.A.; Meruvia, M.S.; Júnior, P.C.S.; Torres, R.D. Tribocorrosion behavior of boronized AISI 4140 steel. Surf. Coat. Technol. 2018, 352, 265–272. [Google Scholar] [CrossRef]
- Yılmaz, D.; Aktaş, B.; Çalık, A.; Aytar, O.B. Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels. Radiat. Phys. Chem. 2019, 161, 55–59. [Google Scholar] [CrossRef]
- Gutierrez-Noda, L.; Cuao-Moreu, C.A.; Perez-Acosta, O.; Lorenzo-Bonet, E.; Zambrano-Robledo, P.; Hernandez-Rodriguez, M.A.L. The effect of a boride diffusion layer on the tribological properties of AISI M2 steel. Wear 2019, 426, 1667–1671. [Google Scholar] [CrossRef]
- Keddam, M.; Chegroune, R.; Kulka, M.; Panfil, D.; Ulker, S.; Taktak, S. Characterization and Diffusion Kinetics of the Plasma Paste Borided AISI 440C Steel. Trans. Indian Inst. Met. 2017, 70, 1377–1385. [Google Scholar] [CrossRef]
- Ca´rdenas, E.E.V.; Lewis, R.; Pe´rez, A.I.M.; Ponce, J.L.B.; Pinal, F.J.P.; Domınguez, M.O.; Arreola, E.D.R. Characterization and wear performance of boride phases over tool steel substrates. Adv. Mech. Eng. 2016, 8, 1687814016630257. [Google Scholar]
- Günen, A.; Karakaş, M.S.; Kurt, B.; Çalık, A. Corrosion behavior of borided AISI 304 austenitic stainless steel. Anti-Corros. Methods Mater. 2014, 61, 112–118. [Google Scholar] [CrossRef]
- Medvedovski, E. Formation of Corrosion-Resistant Thermal Diffusion Boride Coatings. Adv. Eng. Mater. 2016, 18, 11–33. [Google Scholar] [CrossRef]
- Medvedovski, E.; Antonov, M. Erosion studies of the iron boride coatings for protection of tubing components in oil production, mineral processing and engineering applications. Wear 2020, 452, 203277. [Google Scholar] [CrossRef]
- Vidakis, N.; Antoniadis, A.; Bilalis, N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J. Mater. Process. Technol. 2003, 143, 481–485. [Google Scholar] [CrossRef]
- Kayali, Y. Investigation of the Diffusion Kinetics of Borided Stainless Steels. Phys. Met. Metallogr. 2013, 114, 1061–1068. [Google Scholar] [CrossRef]
- Dwivedi, D.K. Surface Engineering-Enhancing Life of Tribological Components; Springer: India, India, 2018; 234p. [Google Scholar]
- Uslu, I.; Comert, H.; Ipek, M.; Celebi, F.G.; Ozdemir, O.; Bindal, C. A comparison of borides formed on AISI 1040 and AISI P20 steels. Mater. Des. 2007, 28, 1819–1826. [Google Scholar] [CrossRef]
- Sinha, A.K. Metals Handbook- Heat Treating-Boriding (boronizing) of Steels; ASM International: Almere, The Netherlands, 1991; Volume 4, pp. 978–999. [Google Scholar]
- Casteletti, L.C.; Lombardi, A.N.; Totten, G.E. Encyclopedia of Tribology. In Boriding; Springer Reference: Boston, MA, USA, 2013; pp. 249–255. [Google Scholar]
- Günen, A.; Kurt, B.; Orhan, N.; Kanca, E. The Investigation of Corrosion Behavior of Borided AISI 304 Austenitic Stainless Steel with Nanoboron Powder. Prot. Met. Phys. Chem. Surf. 2014, 50, 104–110. [Google Scholar] [CrossRef]
- Yapici, A.; Aydin, S.E.; Koc, V.; Kanca, E.; Yildiz, M. Wear Behavior of Borided AISI D2 Steel under Linear Reciprocating Sliding Conditions. Prot. Met. Phys. Chem. Surf. 2019, 55, 341–351. [Google Scholar] [CrossRef]
- Martini, C.; Palombarini, G.; Carbucicchio, M. Mechanism of thermochemical growth of iron borides on iron. J. Mater. Sci. 2004, 39, 933–937. [Google Scholar] [CrossRef]
- Ma, S.; Bao, K.; Tao, Q.; Zhu, P.; Ma, T.; Liu, B.; Liu, Y.; Cui, T. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Sci. Rep. 2017, 7, 43759. [Google Scholar] [CrossRef] [Green Version]
- Türkmen, I.; Yalamaç, E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method. J. Alloy. Compd. 2018, 744, 658–666. [Google Scholar] [CrossRef]
- Taktak, S. A study on the diffusion kinetics of borides on boronized Cr-based steels. J. Mater. Sci. 2006, 41, 7590–7596. [Google Scholar] [CrossRef]
- Duschanek, H.; Rogl, P. The Al-B (aluminum-boron) system. J. Phase Equilibria 1994, 15, 543–552. [Google Scholar] [CrossRef]
- Zong, X.; Jiang, W.; Fan, Z. Characteristics and wear performance of borided AISI 440C matensitic stainless steel. Mater. Express 2018, 8, 500–510. [Google Scholar] [CrossRef]
- Kayali, Y.; Günes, I.; Ulu, S. Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum 2012, 86, 1428–1434. [Google Scholar] [CrossRef]
- Keddam, M.; Ortiz-Domı´nguez, M.; Elias-Espinosa, M.; Damia´n-Mejı´a, O.; Arenas-Flores, A.; Go´mez-Vargas, O.A.; Abreu-Quijano, M.; Aldana-Gonza´lez, J.; Zuno-Silva, J. Growth Kinetics of the Fe2B Coating on AISI H13 Steel. Trans. Indian Inst. Met. 2015, 68, 433–442. [Google Scholar] [CrossRef]
- Gunes, I.; Kanat, S. Diffusion Kinetics and Characterization of Borided AISI D6 Steel. Prot. Met. Phys. Chem. Surf. 2015, 51, 842–846. [Google Scholar] [CrossRef]
- Ruiz-Trabolsi, P.A.; Velázquez, J.S.; Orozco-Álvarez, C.; Carrera-Espinoza, R.; Yescas-Hernández, J.A.; González-Arévalo, N.E.; Hernández-Sánchez, E. Kinetics of the Boride Layers Obtained on AISI 1018 Steel by Considering the Amount of Matter Involved. Coatings 2021, 11, 259. [Google Scholar] [CrossRef]
- Taktak, S.; Tasgetiren, S. Identification of Delamination Failure of Boride Layer on Common Cr-Based Steels. J. Mater. Eng. Perform. 2006, 15, 570–574. [Google Scholar] [CrossRef]
- Gunes, I.; Yıldız, I. Investigation of Adhesion and Tribological Behavior of Borided AISI 310 Stainless Steel. Rev. Matéria 2016, 21, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhao, Y.; Qin, X. Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review. Acta Metall. Sinica 2013, 26, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Svahn, F.; Kassman-Rudolphi, A.; Wallén, E. The influence of surface roughness on friction and wear of machine element coatings. Wear 2003, 254, 1092–1098. [Google Scholar] [CrossRef]
- Cuao-Moreua, C.A.; Hernández-Sanchézb, E.; Alvarez-Verac, M.; Garcia-Sancheza, E.O.; Perez-Unzuetaa, A.; Hernandez-Rodriguez, M.A.L. Tribological behavior of borided surface on CoCrMo cast alloy. Wear 2019, 426, 204–211. [Google Scholar] [CrossRef]
- Roy, M.; Vorlaufer, G.; Pauschitz, A.; Haubner, R. Effect Of Morphology Of Diamond Films On Friction Response In Reciprocating Sliding At Milli-Newton Loads. In Tribology And Surface Engineering; Nova Publishing: Hauppauge, NY, USA, 2012; Volume 1, pp. 187–204. [Google Scholar]
- Gunes, I. Investigation of Tribological Properties and Characterization of Borided AISI 420 and AISI 5120 Steels. Trans. Indian Inst. Met. 2014, 67, 359–365. [Google Scholar] [CrossRef]
- Chao, H.C.; Van Vlack, L.H.; Oberlin, F.; Thomassen, L. Inclusion Deformation: II. Hardness of MnS-FeS Microstructures; Materials Science: Ann Arbor, MI, USA, 1962; pp. 1–21. [Google Scholar]
- Hogmark, S.; Jacobson, S.; Vingsbo, O. Surface Damage. In Friction; ASM Handbook-18: Cleveland, IL, USA, 1992; pp. 321–337. [Google Scholar]
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.278 | 2.75 | 13.804 | 0.011 | 0.017 | 0.195 | 0.036 | 0.058 | 0.067 | 0.092 | balance |
Temperature (°C) | Time (h) | Sample |
---|---|---|
850 | 2 | 852 |
850 | 4 | 854 |
850 | 6 | 856 |
900 | 2 | 902 |
900 | 4 | 904 |
900 | 6 | 906 |
950 | 2 | 952 |
950 | 4 | 954 |
950 | 6 | 956 |
Point | Zone | Fe | B | Mn | Si | C | Al | S |
---|---|---|---|---|---|---|---|---|
1 | BL | 57.4 | 19 | 13.1 | - | 10.4 | 0.1 | - |
2 | BL | 57 | 19.3 | 12.5 | - | 11.2 | 0.1 | - |
3 | BL | 57.2 | 18.2 | 12.6 | - | 11.9 | 0.2 | - |
4 | SRZ | 76.6 | - | 9.9 | 5.7 | 5.9 | 1.9 | - |
5 | SRZ | 76.3 | - | 9.9 | 5.9 | 5.9 | 1.9 | - |
6 | SRZ | 75.9 | - | 9.5 | 5.8 | 7.1 | 1.7 | - |
7 | BL | 65.3 | 11.2 | 18 | - | 5.4 | - | - |
8 | BL | 62.9 | 11 | 18 | - | 8.1 | - | - |
9 | BL | 58.5 | 15.4 | 16.4 | - | 9.6 | 0.1 | - |
10 | TZ | 64 | - | 11.9 | 1.5 | 21.1 | 0.7 | 0.8 |
11 | TZ | 73.4 | - | 14.4 | 2.1 | 8.9 | 1 | 0.2 |
12 | TZ | 71.4 | - | 14 | 2 | 11.2 | 0.9 | 0.4 |
Steel | Temperature (°C) | Time (Hour) | Max. Layer Thickness (µm) | Reference |
---|---|---|---|---|
AISI 420 | 950 | 6 | 64 | [29] |
AISI 304 | 950 | 6 | 37 | [29] |
AISI 304L | 950 | 6 | 45 | [29] |
AISI H13 | 1000 | 6 | 96.46 | [17] |
AISI 1040 | 950 | 8 | ~200 | [31] |
AISI P20 | 950 | 8 | 180 | [31] |
AISI D2 | 1000 | 7 | 126.8 | [35] |
AISI 4140 | 900 | 3 | 42 | [20] |
HMS | 950 | 6 | 117.65 | in this study |
Steel | Boriding Method | Q (kJ/mol) | References |
---|---|---|---|
AISI H13 | Salt Bath | 244.37 | [39] |
AISI 304 | Salt Bath | 253.35 | [39] |
AISI 440C | Pack boriding | 203.723 | [41] |
AISI H13 | Pack boriding | 233 | [43] |
AISI D6 | Pack boriding | 180.539 | [44] |
AISI 1018 | Pack boriding | 148.3 | [45] |
HMS | Pack boriding | 198.486 | In this study |
Sample | Ra (µm) | COF | |||||
---|---|---|---|---|---|---|---|
5 N | 10 N | 15 N | |||||
Mean | St.D. | Mean | St.D. | Mean | St.D. | ||
BM | 0.267 | 0.506 | 0.246 | 0.403 | 0.246 | 0.359 | 0.239 |
852 | 0.836 | 0.503 | 0.322 | 0.485 | 0.317 | 0.421 | 0.268 |
854 | 1.044 | 0.509 | 0.330 | 0.558 | 0.322 | 0.579 | 0.327 |
856 | 0.710 | 0.557 | 0.280 | 0.444 | 0.272 | 0.559 | 0.310 |
902 | 0.813 | 0.594 | 0.249 | 0.514 | 0.285 | 0.479 | 0.289 |
904 | 0.758 | 0.454 | 0.249 | 0.540 | 0.285 | 0.548 | 0.289 |
906 | 0.417 | 0.569 | 0.353 | 0.525 | 0.323 | 0.542 | 0.296 |
952 | 0.745 | 0.627 | 0.344 | 0.540 | 0.322 | 0.607 | 0.306 |
954 | 0.854 | 0.474 | 0.272 | 0.401 | 0.227 | 0.410 | 0.239 |
956 | 0.740 | 0.598 | 0.338 | 0.571 | 0.325 | 0.541 | 0.311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, F.; Sezgin, C.T. Wear Behavior of Borided Cold-Rolled High Manganese Steel. Coatings 2021, 11, 1207. https://doi.org/10.3390/coatings11101207
Hayat F, Sezgin CT. Wear Behavior of Borided Cold-Rolled High Manganese Steel. Coatings. 2021; 11(10):1207. https://doi.org/10.3390/coatings11101207
Chicago/Turabian StyleHayat, Fatih, and Cihangir Tevfik Sezgin. 2021. "Wear Behavior of Borided Cold-Rolled High Manganese Steel" Coatings 11, no. 10: 1207. https://doi.org/10.3390/coatings11101207
APA StyleHayat, F., & Sezgin, C. T. (2021). Wear Behavior of Borided Cold-Rolled High Manganese Steel. Coatings, 11(10), 1207. https://doi.org/10.3390/coatings11101207