Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kraft Paper Functionalization
2.3. Investigation Methods
2.3.1. FT-IR Spectroscopy
2.3.2. Scanning Electron Microscopy
2.3.3. Contact Angle Measurements
2.3.4. Dynamic Water Vapors Sorption Analysis
2.3.5. DPPH Radical Scavenging Assay
2.3.6. In Vitro Antibacterial Activity
2.3.7. In Vivo Microbiological Assessment on Food
3. Results and Discussion
3.1. ATR-FTIR Spectra Results
3.2. SEM Results
3.3. Water Contact Angle
3.4. Water Vapors Sorption
3.5. DPPH Radical Scavenging Properties
3.6. In Vitro Antibacterial Activity
3.7. In Vivo Microbiological Assesment on Food
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasile, C.; Baican, M. Progresses in food packaging, food quality, and safety—Controlled-release antioxidant and/or antimicrobial packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef]
- Coles, R. Introduction. In Food Packaging Technology; Coles, R., McDowell, D., Kirwan, M.J., Eds.; Blackwell Publishing: Boca Raton, FL, USA, 2003; pp. 1–31. [Google Scholar]
- Nicoli, M.C. Shelf Life Assessment of Food, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Carocho, M.; Morales, P.; Ferreira, I.C. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nešić, A.; Cabrera, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [Green Version]
- Tayeb, A.H.; Tajvidi, M.; Bousfield, D. Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules 2020, 25, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Techathuvanan, C.; Reyes, F.; David, J.R.D.; Davidson, P.M. Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms. J. Food Prot. 2014, 77, 269–275. [Google Scholar] [CrossRef]
- Tehrani, F.; Sadeghi, E. Effect of mint essential oil on growth of Listeria monocytogenes during the ripening and storage of Iranian white brined cheese. JAEBS 2015, 5, 150–154. [Google Scholar]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerin, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the food antisepsis field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef] [Green Version]
- Bentayeb, K.; Vera, P.; Rubio, C.; Nerin, C. The additive properties of oxygen radical absorbance capacity (ORAC) assay: The case of essential oils. Food Chem. 2014, 148, 204–208. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable oil: Nutritional and industrial perspective. Curr. Genom. 2016, 17, 230–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadir, R.; Anwar, F. Cold pressed rosehip seed oil. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications, 1st ed.; Fawzy Ramadan, M., Ed.; Elsevier: London, UK, 2020; pp. 315–321. [Google Scholar]
- Koczka, N.; Stefanovits-Bányai, E.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Mármol, I.; Sánchez-De-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic applications of rose hips from different rosa species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič, M.B.; Taous, F.; Valenčič, V.; Elghali, T.; Podgornik, M.; Strojnik, L.; Ogrinc, N. Fatty Acid Composition of cosmetic argan oil: Provenience and authenticity criteria. Molecules 2020, 25, 4080. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Tellah, S.; Capocasale, M.; Zappia, C.; Latati, M.; Badiani, M.; Ounane, S.M. Seed oil from ten algerian peanut landraces for edible use and biodiesel production. J. Oleo Sci. 2016, 65, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M.; Zappia, C.; Capocasale, M. Tomato seed oil: A comparison of extraction systems and solvents on its biodiesel and edible properties. Riv. Ital. Sostanze. Gr. 2017, 94, 149–160. [Google Scholar]
- Musa, Ö. Nutrient composition of Rose (Rosa canina L.) seed and oils. J. Med. Food 2002, 5, 137–140. [Google Scholar]
- Grajzer, M.; Prescha, A.; Korzonek, K.; Wojakowska, A.; Dziadas, M.; Kulma, A.; Grajeta, H. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chem. 2015, 188, 459–466. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; DE Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Butnaru, E.; Stoleru, E.; Brebu, M.A.; Darie-Nita, R.N.; Bargan, A.; Vasile, C. Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials 2019, 12, 373. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Muranyi, P.; Wunderlich, J.; Heise, M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma. J. Appl. Microbiol. 2008, 104, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Jordá-Vilaplana, A.; Fombuena, V.; Garcia-Garcia, D.; Samper, M.D.; Sánchez-Nácher, L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014, 58, 23–33. [Google Scholar] [CrossRef]
- Sdrobiş, A.; Ioanid, G.E.; Stevanovic, T.; Vasile, C. Modification of cellulose/chitin mix fibers with N-isopropylacrylamide and poly(N-isopropylacrylamide) under cold plasma conditions. Polym. Int. 2012, 61, 1767–1777. [Google Scholar] [CrossRef]
- Irimia, A.; Ioanid, G.E.; Zaharescu, T.; Coroaba, A.; Doroftei, F.; Safrany, A.; Vasile, C. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiat. Phys. Chem. 2017, 130, 52–61. [Google Scholar] [CrossRef]
- Clegg, D.W.; Collyer, A. Irradiation Effects on Polymers; Elsevier: London, UK, 1991. [Google Scholar]
- Yasser, F.H.A.; Amr El-Hag, A.; Ghada, F.E.M.; Reda, R. Gamma irradiation effect on the thermal stability, optical and electrical properties of acrylic acid/methyl methacrylate copolymer films. World J. Condens. Matter Phys. 2011, 1, 12. [Google Scholar]
- Handayani, M.; Permawati, H. Gamma irradiation technology to preservation of foodstuffs as an effort to maintain quality and acquaint the significant role of nuclear on food production to Indonesia society: A Review. Energy Procedia 2017, 127, 302–309. [Google Scholar] [CrossRef]
- Drábková, K.; Ďurovič, M.; Kučerová, I. Influence of gamma radiation on properties of paper and textile fibres during disinfection. Rad. Phys. Chem. 2018, 152, 75–80. [Google Scholar] [CrossRef]
- Stoleru, E.; Zaharescu, T.; Hitruc, E.G.; Vesel, A.; Ioanid, E.G.; Coroaba, A.; Safrany, A.; Pricope, G.; Lungu, M.; Schick, C.; et al. Lactoferrin-immobilized surfaces onto functionalized pla assisted by the gamma-rays and nitrogen plasma to create materials with multifunctional properties. ACS Appl. Mater. Interfaces 2016, 8, 31902–31915. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, E.; Vasile, C.; Irimia, A.; Brebu, M. Towards a bioactive food packaging: Poly(lactic acid) surface functionalized by chitosan coating embedding clove and argan oils. Molecules 2021, 26, 4500. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Pâslaru, E.; Sdrobis, A.; Pricope, G.; Ioanid, G.E.; Darie, R.N. Plasma assisted functionalization of synthetic and natural polymers to obtain new bioactive food packaging materials in ionizing radiation and plasma discharge mediating covalent linking of stratified composites materials for food packaging. Available online: http://www-naweb.iaea.org/napc/iachem/working_materials/F2-22063-CR-1-report.pdf (accessed on 22 September 2021).
- Vasile, C.; Sivertsvik, M.; Mitelut, A.C.; Brebu, M.A.; Stoleru, E.; Rosnes, J.T.; Tănase, E.E.; Khan, W.; Pamfil, D.; Cornea, C.P.; et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Oniz-Magan, A.B.; Pastor-Blas, M.M.; Martin-Martinez, J.M. Different performance of Ar, O2 and CO2 RF plasmas in the adhesion of thermoplastic rubber to polyurethane adhesive. In Plasma Processes and Polymers; D’Agostino, R., Favia, P., Oehr, C., Werheimer, M.R., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 177–192. [Google Scholar]
- Rossi, D.; Pittia, P.; Realdon, N. Contact Angle Measurements and Applications in Pharmaceuticals and Foods: A Critical Review. In Progress in Adhesion and Adhesives; Mittal, K.L., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 193–240. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SR ISO 4833/2014. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- SR EN ISO 7218/2014. Microbiology of Food and Animal Feeding Stuffs–General Requirements and Guidance for Microbiological Examinations; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- Kehrer, M.; Duchoslav, J.; Hinterreiter, A.; Mehic, A.; Stehrer, T.; Stifter, D. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures. Surf. Coat. Technol. 2020, 384, 125170. [Google Scholar] [CrossRef]
- Rojas, J.; Cabrera, S.; Benavides, J.; Lopera, Y.; Yarce, C. Lipidic matrixes containing clove essential oil: Biological activity, microstructural and textural studies. Molecules 2021, 26, 2425. [Google Scholar] [CrossRef] [PubMed]
- Mannozzi, C.; Foligni, R.; Scalise, A.; Mozzon, M. Characterization of lipid substances of rose hip seeds as a potential source of functional components: A review. Ital. J. Food Sci. 2020, 32, 721–733. [Google Scholar]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- El-Maati, M.F.A.; Mahgoub, S.; Labib, S.M.; Al-Gaby, A.M.; Ramadan, M.F. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Ilyasoğlu, H. Characterization of rosehip (Rosa canina L.) seed and seed oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Güney, M. Determination of fatty acid profile and antioxidant activity of Rosehip seeds from Turkey. Int. J. Agric. Environ. Food Sci. 2020, 4, 81–86. [Google Scholar] [CrossRef]
- Jakovljevic, M.; Moslavac, T.; Bilic, M.; Aladic, K.; Bakula, F.; Jokic, S. Supercritical CO2 extraction of oil from rose hips (Rosa canina L.) and cornelian cherry (Cornus mas L.) seeds. Croat. J. Food Sci. Technol. 2018, 10, 197–205. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Asker, M.M.; Tadros, M. Lipid profile, antiradical power and antimicrobial properties of Syzygium aromaticum oil. Grasas y Aceites 2013, 64, 509–520. [Google Scholar] [CrossRef]
- Assiri, A.M.A.; Hassanien, M.F. Bioactive Lipids, Radical Scavenging Potential, and Antimicrobial Properties of Cold Pressed Clove (Syzygium aromaticum) Oil. J. Med. Food 2013, 16, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Activation Procedure | Type of Oil |
---|---|---|
P | - | - |
P/CPA/CEO | cold air plasma | clove essential oil |
P/CPA/RVO | cold air plasma | rosehip seeds vegetal oil |
P/20 kGy/CEO | 20 kGy γ-irradiation | clove essential oil |
P/20 kGy/RVO | 20 kGy γ-irradiation | rosehip seeds vegetal oil |
Sample | Element | ||||||
---|---|---|---|---|---|---|---|
C | O | N | O/C | ||||
wt % | At% | wt% | At% | wt% | At% | At% | |
P | 59.87 ± 1.20 | 65.4 ± 1.31 | 38.29 ± 0.77 | 33.32 ± 0.67 | 0.79 ± 0.02 | 0.77 ± 0.02 | 0.509 |
P/CPA | 54.24 ± 1.08 | 61.86 ± 1.24 | 41.58 ± 0.83 | 35.60 ± 0.71 | 0.87 ± 0.02 | 0.86 ± 0.02 | 0.575 |
P/CPA/CEO | 53.28 ± 1.07 | 61.47 ± 1.23 | 44.51 ± 0.89 | 36.74 ± 0.73 | 1.81 ± 0.04 | 1.66 ± 0.03 | 0.597 |
P/CPA/RVO | 55.87 ± 1.12 | 63.39 ± 1.27 | 42.59 ± 0.85 | 35.37 ± 0.71 | 1.33 ± 0.03 | 1.09 ± 0.02 | 0.558 |
P/20 kGy | 53.39 ± 1.07 | 61.27 ± 1.23 | 41.25 ± 0.83 | 35.54 ± 0.71 | 0.91 ± 0.02 | 0.89 ± 0.02 | 0.580 |
P/20 kGy/CEO | 54.60 ± 1.09 | 62.20 ± 1.24 | 42.08 ± 0.84 | 35.53 ± 0.71 | 1.99 ± 0.04 | 1.76 ± 0.04 | 0.571 |
P/20 kGy/RVO | 56.39 ± 1.13 | 63.75 ± 1.28 | 39.33 ± 0.79 | 33.38 ± 0.67 | 2.42 ± 0.05 | 1.48 ± 0.03 | 0.523 |
Sample | CPA/CEO | CPA/RVO | 20 kGy/CEO | 20 kGy/RVO |
---|---|---|---|---|
IC50 (mg/mL) | 0.052 | 14.190 | 0.104 | 35.475 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irimia, A.; Stoleru, E.; Vasile, C.; Bele, A.; Brebu, M. Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging. Coatings 2021, 11, 1211. https://doi.org/10.3390/coatings11101211
Irimia A, Stoleru E, Vasile C, Bele A, Brebu M. Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging. Coatings. 2021; 11(10):1211. https://doi.org/10.3390/coatings11101211
Chicago/Turabian StyleIrimia, Anamaria, Elena Stoleru, Cornelia Vasile, Adrian Bele, and Mihai Brebu. 2021. "Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging" Coatings 11, no. 10: 1211. https://doi.org/10.3390/coatings11101211
APA StyleIrimia, A., Stoleru, E., Vasile, C., Bele, A., & Brebu, M. (2021). Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging. Coatings, 11(10), 1211. https://doi.org/10.3390/coatings11101211