Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torralba, J.; da Costa, C.; Velasco, F. P/M aluminum matrix composites: An overview. J. Mater. Process. Technol. 2003, 133, 203–206. [Google Scholar] [CrossRef]
- Sato, A.; Mehrabian, R. Aluminum matrix composites: Fabrication and properties. Metall. Trans. B 1976, 7, 443–451. [Google Scholar] [CrossRef]
- Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. J. Mater. Res. Technol. 2014, 3, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Gu, D.; Ma, C.; Xi, L.; Zhang, H. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites. Vacuum 2019, 160, 189–196. [Google Scholar] [CrossRef]
- Wen, X.; Wang, Q.; Mu, Q.; Kang, N.; Sui, S.; Yang, H.; Lin, X.; Huang, W. Laser solid forming additive manufac-turing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties. Mater. Sci. Eng. A 2019, 745, 319–325. [Google Scholar] [CrossRef]
- Kimura, T.; Nakamoto, T.; Suyama, T.; Miki, T. In-Process Fabrication of Carbon-Dispersed Aluminum Matrix Composite Using Selective Laser Melting. Metals 2020, 10, 619. [Google Scholar] [CrossRef]
- Wang, H.; Gu, D. Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting. J. Compos. Mater. 2015, 49, 1639–1651. [Google Scholar] [CrossRef]
- Aversa, A.; Marchese, G.; Saboori, A.; Bassini, E.; Manfredi, D.; Biamino, S.; Ugues, D.; Fino, P.; Lombardi, M. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials 2019, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, D.; Calignano, F.; Krishnan, M.; Canali, R.; Paola, E.; Biamino, S.; Ugues, D.; Pavese, M.; Fino, P. Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs). In Light Metal Alloys Applications; InTech: London, UK, 2014. [Google Scholar]
- Gu, D.; Chang, F.; Dai, D. Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases. J. Manuf. Sci. Eng. 2015, 137. [Google Scholar] [CrossRef]
- Chen, B.; Xi, X.; Tan, C.; Song, X. Recent progress in laser additive manufacturing of aluminum matrix composites. Curr. Opin. Chem. Eng. 2020, 28, 28–35. [Google Scholar] [CrossRef]
- Pelevin, I.A.; Nalivaiko, A.Y.; Ozherelkov, D.Y.; Shinkaryov, A.S.; Chernyshikhin, S.V.; Arnautov, A.N.; Zmanovsky, S.V.; Gromov, A.A. Selective Laser Melting of Al-Based Matrix Composites with Al2O3 Reinforcement: Features and Advantages. Materials 2021, 14, 2648. [Google Scholar] [CrossRef]
- Gromov, A.A.; Nalivaiko, A.Y.; Ambaryan, G.N.; Vlaskin, M.S.; Buryakovskaya, O.A.; Kislenko, S.A.; Zhuk, A.Z.; Shkolnikov, E.I.; Slyusarskiy, K.V.; Osipenkova, A.A.; et al. Aluminum–Alumina Composites: Part Ⅰ: Obtaining and Characterization of Powders. Materials 2019, 12, 3180. [Google Scholar] [CrossRef] [Green Version]
- Xi, L.; Guo, S.; Gu, D.; Guo, M.; Lin, K. Microstructure development, tribological property and underlying mecha-nism of laser additive manufactured submicro-TiB2 reinforced Al-based composites. J. Alloys Compd. 2020, 819, 152980. [Google Scholar] [CrossRef]
- Ozherelkov, D.Y.; Eremin, S.A.; Anikin, V.N.; Chernyshikhin, S.V.; Nalivaiko, A.Y.; Gromov, A.A. On the mechanism of electrochemical deposition of graphene on Al foils and AlSi10MgCu particles. Mat. Chem. Phys. 2021, 267, 124673. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, P.; Misra, R.D.K.; Dong, M.; Guan, R.; Li, Y.; Zhang, J.; Tan, L.; Gao, J.; Ding, T.; et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. J. Alloys Compd. 2019, 792, 203–214. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Z.; Tan, S.; Duan, L. Feasibility Study of Selective Laser Melting for Metal Matrix Diamond Tools. Crystals 2020, 10, 596. [Google Scholar] [CrossRef]
- Gan, J.; Gao, H.; Wen, S.; Zhou, Y.; Tan, S.; Duan, L. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting. Int. J. Refract. Met. Hard Mater. 2020, 87, 105144. [Google Scholar] [CrossRef]
- Sundqvist, B. Carbon under pressure. Phys. Rep. 2021, 909, 1–73. [Google Scholar] [CrossRef]
- Liang, X.; Jia, C.; Chu, K.; Chen, H.; Nie, J.; Gao, W. Thermal conductivity and microstructure of Al/diamond com-posites with Ti-coated diamond particles consolidated by spark plasma sintering. J. Compos. Mater. 2012, 46, 1127–1136. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, G.; Li, X.P.; Chen, C.Y.; Tan, Z.Q.; Addad, A.; Li, Z.Q.; Sercombe, T.B.; Kruth, J.P. On the study of tailorable interface structure in a diamond/Al12Si composite processed by selective laser melting. Materialia 2019, 5. [Google Scholar] [CrossRef]
- Spierings, A.B.; Leinenbach, C.; Kenel, C.; Wegener, K. Processing of metal-diamond-composites using selective laser melting. Rapid Prototyp. J. 2015, 21, 130–136. [Google Scholar] [CrossRef]
- Constantin, L.; Kraiem, N.; Wu, Z.; Cui, B.; Battaglia, J.L.; Garnier, C.; Silvain, J.F.; Lu, Y.F. Manufacturing of com-plex diamond-based composite structures via laser powder-bed fusion. Addit. Manuf. 2021, 40, 101927. [Google Scholar] [CrossRef]
- Sherif El-Eskandarany, M. Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. J. Alloys Compd. 1998, 279, 263–271. [Google Scholar] [CrossRef]
- Liao, J.; Tan, M.-J. Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol. 2011, 208, 42–48. [Google Scholar] [CrossRef]
- Sergienko, A.V.; Solovieva, K.N.; Balakhnina, A.V.; Petrov, E.A.; Ozherelkov, D.Y.; Nalivaiko, A.Y.; Gromov, A.A. Nanodiamonds characterization and application as a burning rate modifier for solid propellants. Mater. Today Commun. 2021, 27, 102332. [Google Scholar] [CrossRef]
- Jang, D.M.; Im, H.S.; Back, S.H.; Park, K.; Lim, Y.R.; Jung, C.S.; Park, J.; Lee, M. Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 2411–2416. [Google Scholar] [CrossRef] [PubMed]
- Rabinkin, A.; Shapiro, A.E.; Boretius, M. Brazing of diamonds and cubic boron nitride. In Advances in Brazing; Woodhead Publishing: Sawston, UK, 2013; pp. 160–193. [Google Scholar] [CrossRef]
- Rahman, A.; Frangeskou, A.; Kim, M. Burning and graphitization of optically levitated nanodiamonds in vacuum. Sci. Rep. 2016, 6, 21633. [Google Scholar] [CrossRef] [Green Version]
- Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 2012, 39, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; San Sebastian, M.; Gil, E.; Wang, C.Y.; Milenkovic, S.; Pérez-Prado, M.T.; Cepeda-Jiménez, C.M. Effect of the heat treatment on the microstructure and hardness evolution of a AlSi10MgCu alloy designed for laser powder bed fusion. Mater. Sci. Eng. A 2021, 141487. [Google Scholar] [CrossRef]
Sample Code | Laser Power, W | Scanning Speed, mm/s | Hatch Distance, mm | LED, J/mm2 |
---|---|---|---|---|
1 | 370 | 850 | 0.13 | 3.35 |
2 | 370 | 1050 | 0.13 | 2.71 |
3 | 370 | 1250 | 0.13 | 2.28 |
4 | 370 | 1450 | 0.13 | 1.96 |
5 | 370 | 1650 | 0.13 | 1.72 |
6 | 300 | 850 | 0.13 | 2.71 |
7 | 300 | 1050 | 0.13 | 2.20 |
8 | 300 | 1250 | 0.13 | 1.85 |
9 | 300 | 1450 | 0.13 | 1.59 |
10 | 300 | 1650 | 0.13 | 1.40 |
11 | 250 | 850 | 0.13 | 2.26 |
12 | 250 | 1050 | 0.13 | 1.83 |
13 | 250 | 1250 | 0.13 | 1.54 |
14 | 250 | 1450 | 0.13 | 1.33 |
15 | 250 | 1650 | 0.13 | 1.17 |
Sample Code | Hardness, HV50 |
---|---|
1 | Sample destroyed |
2 | 105 ± 3 |
3 | 110 ± 3 |
4 | 162 ± 5 |
5 | 170 ± 5 |
6 | Sample destroyed |
7 | Sample destroyed |
8 | 111 ± 3 |
9 | 138 ± 4 |
10 | 172 ± 5 |
11 | Sample destroyed |
12 | Sample destroyed |
13 | Sample destroyed |
14 | Sample destroyed |
15 | Sample destroyed |
Etching Time, min | Elemental Composition, at.%. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Al | Si | Cu | Mg | Fe | Mn | N | F | Ca | Na | K | |
- | 25.1 | 42.5 | 19.7 | 8.0 | - | - | - | - | 2.1 | 0.7 | 0.4 | 1.1 | 0.4 |
1 | - | 39.0 | 52.0 | 6.4 | 1.2 | 0.7 | 0.3 | 0.4 | - | - | - | - | - |
3 | - | 20.6 | 70.0 | 7.7 | 0.7 | 0.4 | 0.3 | 0.3 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinkaryov, A.S.; Ozherelkov, D.Y.; Pelevin, I.A.; Eremin, S.A.; Anikin, V.N.; Burmistrov, M.A.; Chernyshikhin, S.V.; Gromov, A.A.; Nalivaiko, A.Y. Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description. Coatings 2021, 11, 1219. https://doi.org/10.3390/coatings11101219
Shinkaryov AS, Ozherelkov DY, Pelevin IA, Eremin SA, Anikin VN, Burmistrov MA, Chernyshikhin SV, Gromov AA, Nalivaiko AY. Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description. Coatings. 2021; 11(10):1219. https://doi.org/10.3390/coatings11101219
Chicago/Turabian StyleShinkaryov, Alexander S., Dmitriy Yu Ozherelkov, Ivan A. Pelevin, Sergey A. Eremin, Vyacheslav N. Anikin, Maxim A. Burmistrov, Stanislav V. Chernyshikhin, Alexander A. Gromov, and Anton Yu Nalivaiko. 2021. "Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description" Coatings 11, no. 10: 1219. https://doi.org/10.3390/coatings11101219
APA StyleShinkaryov, A. S., Ozherelkov, D. Y., Pelevin, I. A., Eremin, S. A., Anikin, V. N., Burmistrov, M. A., Chernyshikhin, S. V., Gromov, A. A., & Nalivaiko, A. Y. (2021). Laser Fusion of Aluminum Powder Coated with Diamond Particles via Selective Laser Melting: Powder Preparation and Synthesis Description. Coatings, 11(10), 1219. https://doi.org/10.3390/coatings11101219