MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing
Abstract
:1. Introduction
- An innovative solution scheme based on a two-layer arrangement of LM-SNNs is proposed for the solution of MHD-HFRHT flow model in the form of non-linear ODEs.
- The MHD-HFRHT flow problem is numerically solved by using “NDSolve” methodology in the Mathematica software. Reference solution in the form of data sets is placed for LM-SNNs for training, validation and the testing of these data sets.
- Comparison of reference solution with proposed LM-SNNs based solution is authenticated with numerical and graphical results of MSE, regression plots, error-correlation and error histogram which confirm the stability, accuracy, and convergence of solution methodology.
2. Mathematical Formulation of the Problem
3. Solution Methodology
4. Results and Discussion
5. Conclusions
- By increasing the Hartmann number there more resistance to flow which results in the reduction of velocity. This happens as the Hartmann number measures the relative implication of drag force derived from the magnetic induction of the velocity of the fluid flow system.
- Velocity of the fluid enhances with higher values of the Reynolds number due to the strength of the inertial force. Moreover, the rotation parameter also accelerates the velocity of the fluid-flow system.
- Temperature profile declines with an increase in the Hartmann number and thermal slip parameter.
- With the larger values of Prandtl due to which momentum diffusivity dominates over thermal diffusivity, are a result of the decrease in the temperature profile.
- Temperature profile decreases for high values of Eckert numbers, which is due to dominating bulk transport of the fluid flow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
u, v, w | Velocity components |
k | Thermal Conductivity |
T | Temperature |
L0 | Velocity slip coefficient |
Re | Reynolds Number |
f, g | Transformed components of velocity |
CP | Specific Heat |
θ | Transformed temperature |
LT | Thermal slip coefficient |
Nu | Prandtl Number |
Subscripts | |
nf | Nanofluid |
hnf | Hybrid nanofluid |
Greek Letters | |
ρ | Density |
μ | Viscosity |
η | Transformed coordinate |
σ | Electrical conductivity |
Nano particle Volume fraction | |
α | Transformed velocity slip parameter |
β | Transformed thermal slip parameter |
ω | Rotation parameter |
Abbreviations | |
MHD | Magnetohydrodynamics |
MSE | Mean square error |
PDEs | Partial differential equations |
CNTs | Carbon nanotubes |
ODEs | Ordinary differential equations |
AE | Absolute error |
HFRHT | Hybrid nanofluid flow due to rotating disk with heat absorption and thermal slip effects |
Appendix A
References
- Chi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab: Lemont, IL, USA, 1995; No. ANL/MSD/CP-84938; CONF-951135-29. [Google Scholar]
- Kang, H.U.; Kim, S.H.; Oh, J.M. Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume. Exp. Heat Transf. 2006, 19, 181–191. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.S.; Li, S.A.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Babu, J.R.; Kumar, K.K.; Rao, S.S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
- Gulzar, O.; Qayoum, A.; Gupta, R. Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 Therminol-55 nanofluids for concentrating solar collectors. Powder Technol. 2019, 352, 436–444. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Sol. Energy 2019, 183, 173–203. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Mao, M.; Huang, J.N. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J. Clean. Prod. 2020, 257, 120408. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Islam, S.; Shah, Z.; Kumam, P.; Alrabaiah, H. Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Rajesh, V.; Chamkha, A.; Kavitha, M. Numerical investigation of Ag-CuO/water hybrid nanofluid flow past a moving oscillating cylinder with heat transfer. Math. Methods Appl. Sci. 2020, 1–16. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Nagoor, A.H.; Alaidarous, E.S.; Sabir, M.T.; Shoaib, M.; Raja, M.A.Z. Numerical treatment for three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer medium by the Lobatto IIIA technique. AIP Adv. 2020, 10, 025016. [Google Scholar] [CrossRef] [Green Version]
- Alempour, S.M.; Arani, A.A.A.; Najafizadeh, M.M. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section. J. Therm. Anal. Calorim. 2020, 140, 1237–1257. [Google Scholar] [CrossRef]
- Ouyang, C.; Akhtar, R.; Raja, M.A.Z.; Touseef Sabir, M.; Awais, M.; Shoaib, M. Numerical treatment with Lobatto IIIA technique for radiative flow of MHD hybrid nanofluid (Al2O3—Cu/H2O) over a convectively heated stretchable rotating disk with velocity slip effects. AIP Adv. 2020, 10, 055122. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow. Alex. Eng. J. 2020, 59, 91–99. [Google Scholar] [CrossRef]
- Afridi, M.I.; Tlili, I.; Goodarzi, M.; Osman, M.; Alam Khan, N. Khan Irreversibility Analysis of Hybrid Nanofluid Flow over a Thin Needle with Effects of Energy Dissipation. Symmetry 2019, 11, 663. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, A.; Sindhu, T.N.; Khalique, C.M. Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology. Alex. Eng. J. 2020, 59, 4533–4548. [Google Scholar] [CrossRef]
- Nadeem, S.; Abbas, N.; Malik, M. Inspection of hybrid based nanofluid flow over a curved surface. Comput. Methods Progr. Biomed. 2020, 189, 105193. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Pop, I. Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet. Int. J. Numer. Methods Heat Fluid Flow 2020, 31, 914–932. [Google Scholar] [CrossRef]
- Sreedevi, P.; Reddy, P.S.; Chamkha, A. Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Satya Narayana, P.V. Cu-Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue-dependent viscosity and viscous dissipation. Heat Transf. 2020, 50, 432–449. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, U.; Mohyud-Din, S.T. Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks. Alex. Eng. J. 2018, 57, 1893–1903. [Google Scholar] [CrossRef]
- Kandasamy, R.; Adnan, N.A.B.; Mohammad, R. Nanoparticle shape effects on squeezed MHD flow of water based Cu, Al2O3 and SWCNTs over a porous sensor surface. Alex. Eng. J. 2018, 57, 1433–1445. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Awais, M.; Islam, S.; Shah, Z.; Kumam, P. Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alex. Eng. J. 2021, 60, 3605–3619. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Mujumdar, A.S. A review on nanofluids—Part I: Theoretical and numerical investigations. Braz. J. Chem. Eng. 2008, 25, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Reiner, M. A Mathematical Theory of Dilatancy. Am. J. Math. 1945, 67, 350. [Google Scholar] [CrossRef]
- Rivlin, R.S. The hydrodynamics of non-Newtonian fluids. I. Proc. R Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 260–281. [Google Scholar]
- Ellahi, R.; Zeeshan, A.; Abbas, T.; Hussain, F. Thermally Charged MHD Bi-Phase Flow Coatings with Non-Newtonian Nanofluid and Hafnium Particles along Slippery Walls. Coatings 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Ellahi, R.; Alamri, S.Z.; Basit, A.; Majeed, A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J. Taibah Univ. Sci. 2018, 12, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Alamri, S.Z.; Khan, A.A.; Azeez, M.; Ellahi, R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of Cattaneo–Christov heat flux model. Phys. Lett. A 2018, 383, 276–281. [Google Scholar] [CrossRef]
- Yousif, M.A.; Ismael, H.F.; Abbas, T.; Ellahi, R. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transf. Res. 2019, 50, 649–658. [Google Scholar] [CrossRef]
- Pal, D.; Chatterjee, D.; Vajravelu, K. Influence of magneto-thermo radiation on heat transfer of a thin nanofluid film with non-uniform heat source/sink. Propuls. Power Res. 2020, 9, 169–180. [Google Scholar] [CrossRef]
- Iqbal, S.A.; Sajid, M.; Mahmood, K.; Naveed, M.; Khan, M.Y. An iterative approach to viscoelastic boundary layer flows with heat source/sink and thermal radiation. Therm. Sci. 2019, 24, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Ramadevi, B.; Kumar, K.A.; Sugunamma, V.; Sandeep, N. Influence of non-uniform heat source/sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier’s law. Pramana 2019, 93, 86. [Google Scholar] [CrossRef]
- Wang, C.F.; Kafle, B.; Tesema, T.E.; Kookhaee, H.; Habteyes, T.G. Molecular Sensitivity of Near-Field Vibrational Infrared Imaging. J. Phys. Chem. C 2020, 124, 21018–21026. [Google Scholar] [CrossRef]
- Mozaffari, S.; Tchoukov, P.; Mozaffari, A.; Atias, J.; Czarnecki, J.; Nazemifard, N. Capillary driven flow in nanochannels–Application to heavy oil rheology studies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 178–187. [Google Scholar] [CrossRef]
- Ghasemi, H.; Mozaffari, S.; Mousavi, S.H.; Aghabarari, B.; Abu-Zahra, N. Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts. J. Environ. Chem. Eng. 2021, 9, 105091. [Google Scholar] [CrossRef]
- Tesema, T.E.; Kookhaee, H.; Habteyes, T.G. Extracting Electronic Transition Bands of Adsorbates from Molecule–Plasmon Excitation Coupling. J. Phys. Chem. Lett. 2020, 11, 3507–3514. [Google Scholar] [CrossRef]
- Khan, I.; Raja, M.A.Z.; Shoaib, M.; Kumam, P.; Alrabaiah, H.; Shah, Z.; Islam, S. Design of Neural Network With Levenberg-Marquardt and Bayesian Regularization Backpropagation for Solving Pantograph Delay Differential Equations. IEEE Access 2020, 8, 137918–137933. [Google Scholar] [CrossRef]
- Sabir, Z.; Saoud, S.; Raja, M.A.Z.; Wahab, H.A.; Arbi, A. Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation. Math. Comput. Simul. 2020, 178, 534–548. [Google Scholar] [CrossRef]
- Jafarian, A.; Mokhtarpour, M.; Baleanu, D. Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput. Appl. 2016, 28, 765–773. [Google Scholar] [CrossRef]
- Almalki, M.M.; Alaidarous, E.S.; Maturi, D.A.; Raja, M.A.Z.; Shoaib, M. Intelligent computing technique based supervised learning for squeezing flow model. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.A.Z.; Shoaib, M.; Tabassum, R.; Khan, M.I.; Gowda, R.J.P.; Prasannakumara, B.C.; Malik, M.Y.; Xia, W.-F. Intelligent computing for the dynamics of entropy optimized nanofluidic system under impacts of MHD along thick surface. Int. J. Mod. Phys. B 2021, 35, 2150269. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Tamnanloo, J.; Mousavi, S.H.; Miandoab, E.S.; Hosseini, E.; Ghasemi, H.; Mozaffari, S. Discrete-Continuous Genetic Algorithm for Designing a Mixed Refrigerant Cryogenic Process. Ind. Eng. Chem. Res. 2021, 60, 7700–7713. [Google Scholar] [CrossRef]
- Kiani, A.K.; Khan, W.U.; Raja, M.A.Z.; He, Y.; Sabir, Z.; Shoaib, M. Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems. Sustainability 2021, 13, 9537. [Google Scholar] [CrossRef]
- Bukhari, A.H.; Sulaiman, M.; Islam, S.; Shoaib, M.; Kumam, P.; Raja, M.A.Z. Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alex. Eng. J. 2020, 59, 101–116. [Google Scholar] [CrossRef]
- Naz, S.; Raja, M.A.Z.; Mehmood, A.; Zameer, A.; Shoaib, M. Neuro-intelligent networks for Bouc–Wen hysteresis model for piezostage actuator. Eur. Phys. J. Plus 2021, 136, 1–20. [Google Scholar] [CrossRef]
- Umar, M.; Raja, M.A.Z.; Sabir, Z.; Alwabli, A.S.; Shoaib, M. A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur. Phys. J. Plus 2020, 135, 1–23. [Google Scholar] [CrossRef]
- Ahmad, I.; Ilyas, H.; Urooj, A.; Aslam, M.S.; Shoaib, M.; Raja, M.A.Z. Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 2019, 31, 9041–9059. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Aguilar, J.G.; Amin, F.; Shoaib, M. Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells. Math. Comput. Simul. 2021, 188, 241–253. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Gupta, M.; Sánchez, Y.G. A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics. Symmetry 2020, 12, 1628. [Google Scholar] [CrossRef]
- Cheema, T.N.; Raja, M.A.Z.; Ahmad, I.; Naz, S.; Ilyas, H.; Shoaib, M. Intelligent computing with Levenberg–Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control. Eur. Phys. J. Plus 2020, 135, 1–35. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Amin, F.; Guirao, J.L.G.; Raja, M.A.Z. Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 2020, 135, 1–19. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Bukhari, A.H.; Alrabaiah, H.; Shah, Z.; Kumam, P.; Islam, S. A Stochastic Numerical Analysis Based on Hybrid NAR-RBFs Networks Nonlinear SITR Model for Novel COVID-19 Dynamics. Comput. Methods Programs Biomed. 2021, 202, 105973. [Google Scholar] [CrossRef]
- Khan, M.I.; Hafeez, M.U.; Hayat, T.; Khan, M.I.; Alsaedi, A. Magneto rotating flow of hybrid nanofluid with entropy generation. Comput. Methods Progr. Biomed. 2020, 183, 105093. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Khan, M.W.A.; Hayat, T.; Alsaedi, A. Dissipative flow of hybrid nanomaterial with entropy optimization. Mater. Res. Express 2019, 6, 085003. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azhar, E.; Maraj, E.N. Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3—Ag/H2O hybrid nanofluid. Eur. Phys. J. Plus 2017, 132, 544. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 136, 288–297. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Heat transfer capability of the hybrid nanofluids for heat transfer applications. J. Mol. Liq. 2018, 272, 857–870. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Khan, M.A.R.; Farhat, I.; Awan, S.E. Neuro-Computing Networks for Entropy Generation under the Influence of MHD and Thermal Radiation. Surf. Interfaces 2021, 25, 101243. [Google Scholar] [CrossRef]
- Almalki, M.M.; Alaidarous, E.S.; Maturi, D.A.; Raja, M.A.Z.; Shoaib, M. A Levenberg–Marquardt Backpropagation Neural Network for the Numerical Treatment of Squeezing Flow With Heat Transfer Model. IEEE Access 2020, 8, 227340–227348. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Jamshed, W.; Nisar, K.S.; Khan, I.; Farhat, I. Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. Int. Commun. Heat Mass Transf. 2021, 127, 105544. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Mo, Y.; Xiao, C.; An, W. Disparity Estimation for Camera Arrays Using Reliability Guided Disparity Propagation. IEEE Access 2018, 6, 21840–21849. [Google Scholar] [CrossRef]
- Lopez, M.; Valero, S.; Senabre, C.; Aparicio, J.; Gabaldon, A. Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study. Electr. Power Syst. Res. 2012, 91, 18–27. [Google Scholar] [CrossRef]
- Ibrahim, M.; Jemei, S.; Wimmer, G.; Hissel, D. Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles. Electr. Power Syst. Res. 2016, 136, 262–269. [Google Scholar] [CrossRef]
- Alwakeel, M.; Shaaban, Z. Face recognition based on Haar wavelet transform and principal component analysis via Levenberg-Marquardt backpropagation neural network. Eur. J. Sci. Res. 2010, 42, 25–31. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Umar, M.; Akhtar, R.; Sabir, Z.; Wahab, H.A.; Zhiyu, Z.; Imran, A.; Shoaib, M.; Raja, M.A.Z. Numerical Treatment for the Three-Dimensional Eyring-Powell Fluid Flow over a Stretching Sheet with Velocity Slip and Activation Energy. Adv. Math. Phys. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, M.; Akhtar, R.; Khan, M.A.R.; Rana, M.A.; Siddiqui, A.M.; Zhiyu, Z.; Raja, M.A.Z. A Novel Design of Three-Dimensional MHD Flow of Second-Grade Fluid past a Porous Plate. Math. Probl. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Awan, S.E.; Raja, M.A.Z.; Gul, F.; Khan, Z.A.; Mehmood, A.; Shoaib, M. Numerical Computing Paradigm for Investigation of Micropolar Nanofluid Flow Between Parallel Plates System with Impact of Electrical MHD and Hall Current. Arab. J. Sci. Eng. 2020, 46, 645–662. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Zubair, G.; Farhat, I.; Nisar, K.S.; Sabir, Z.; Jamshed, W. Intelligent Computing with Levenberg–Marquardt Backpropagation Neural Networks for Third-Grade Nanofluid Over a Stretched Sheet with Convective Conditions. Arab. J. Sci. Eng. 2021, 1–19. [Google Scholar] [CrossRef]
- Ali, Y.; Afzal Rana, M.; Shoaib, M. Three Dimensional Second Grade Fluid Flow Between Two Parallel Horizontal Plates with Periodic Suction/Injection in Slip Flow Regime. Punjab Univ. J. Math. 2020, 50, 133–145. [Google Scholar]
- Mozaffari, S.; Ghasemi, H.; Tchoukov, P.; Czarnecki, J.; Nazemifard, N. Lab-on-a-Chip Systems in Asphaltene Characterization: A Review of Recent Advances. Energy Fuels 2021, 35, 9080–9101. [Google Scholar] [CrossRef]
- Bibi, A.; Xu, H. Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions. Sci. Rep. 2020, 10, 1–20. [Google Scholar] [CrossRef]
- Ghasemi, H.; Darjani, S.; Mazloomi, H.; Mozaffari, S. Preparation of stable multiple emulsions using food-grade emulsifiers: Evaluating the effects of emulsifier concentration, W/O phase ratio, and emulsification process. SN Appl. Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef]
- Abbasi, A.; Farooq, W.; Khan, S.U.; Amer, H.; Khan, M.I. Electroosmosis optimized thermal model for peristaltic flow of with Sutterby nanoparticles in asymmetric trapped channel. Eur. Phys. J. Plus 2021, 136, 1–18. [Google Scholar] [CrossRef]
Material | Thermophysical Properties | |||
---|---|---|---|---|
Density (Kg/m3) | Thermal Conductivity (W m−1K−1) | Electrical Conductivity (s/m) | Specific Heat (J Kg−1K−1) | |
Water (H2O) | 997 | 0.613 | 5.5 × 10−6 | 4179 |
Cu Nanoparticles | 8933 | 400 | 3.5 × 107 | 385 |
Al2O3 Nanoparticles | 3970 | 40 | 5.96 × 107 | 765 |
Scen. | Case Study 1 | Case Study 2 | Case Study 3 | Case Study 4 |
---|---|---|---|---|
1 | Ha = 1.0 | Ha = 1.3 | Ha = 1.7 | Ha = 2.0 |
2 | = 0.6 | = 0.8 | = 1.0 | = 1.2 |
3 | = 0.6 | = 0.8 | = 1.0 | = 1.2 |
4 | = 0.2 | = 0.4 | = 0.6 | = 0.8 |
5 | Re = 1.0 | Re = 2.0 | Re = 3.0 | Re = 4.0 |
6 | Pr = 6.0 | Pr = 6.3 | Pr = 6.7 | Pr = 7.0 |
Scen. | Cases | Neurons | MSE | Gradient | Mu | Epochs | Computation Time (s) | ||
---|---|---|---|---|---|---|---|---|---|
Training | Testing | Validation | |||||||
1 (Ha) | I | 70 | 1.210 × 10−10 | 6.056 × 10−10 | 1.384 × 10−10 | 9.745 × 10−8 | 1 × 10−8 | 117 | 11 |
II | 70 | 1.054 × 10−10 | 1.520 × 10−10 | 1.255 × 10−10 | 9.833 × 10−8 | 1 × 10−9 | 72 | 09 | |
III | 80 | 1.170 × 10−10 | 2.340 × 10−10 | 1.427 × 10−10 | 9.830 × 10−8 | 1 × 10−9 | 125 | 11 | |
IV | 70 | 7.816 × 10−10 | 1.284 × 10−9 | 9.305 × 10−10 | 9.765 × 10−8 | 1 × 10−8 | 127 | 13 | |
2 (α) | I | 70 | 6.129 × 10−11 | 9.158 × 10−10 | 7.982 × 10−11 | 9.850 × 10−8 | 1 × 10−8 | 131 | 14 |
II | 70 | 9.734 × 10−11 | 1.174 × 10−10 | 1.108 × 10−10 | 9.804 × 10−8 | 1 × 10−8 | 90 | 08 | |
III | 70 | 1.074 × 10−11 | 1.335 × 10−10 | 1.300 × 10−10 | 9.778 × 10−8 | 1 × 10−8 | 122 | 14 | |
IV | 70 | 9.275 × 10−11 | 2.112 × 10−10 | 1.137 × 10−10 | 9.961 × 10−8 | 1 × 10−8 | 85 | 08 | |
3 (β) | I | 70 | 1.700 × 10−10 | 1.438 × 10−10 | 2.598 × 10−10 | 9.673 × 10−8 | 1 × 10−9 | 77 | 08 |
II | 80 | 9.865 × 10−11 | 9.929 × 10−10 | 7.447 × 10−10 | 9.972 × 10−8 | 1 × 10−8 | 105 | 10 | |
III | 80 | 1.221 × 10−10 | 1.410 × 10−10 | 1.532 × 10−10 | 9.850 × 10−8 | 1 × 10−9 | 97 | 09 | |
IV | 80 | 9.865 × 10−11 | 1.314 × 10−10 | 1.251 × 10−10 | 9.686 × 10−8 | 1 × 10−9 | 48 | 06 | |
4 (ω) | I | 70 | 7.490 × 10−11 | 2.124 × 10−10 | 1.030 × 10−10 | 9.825 × 10−8 | 1 × 10−9 | 168 | 16 |
II | 70 | 1.607× 10−10 | 3.154 × 10−10 | 2.905 × 10−10 | 9.897 × 10−8 | 1 × 10−9 | 94 | 09 | |
III | 80 | 4.030 × 10−11 | 4.620 × 10−11 | 5.413 × 10−11 | 9.980 × 10−8 | 1 × 10−9 | 191 | 18 | |
IV | 70 | 6.417 × 10−11 | 6.722 × 10−11 | 5.568 × 10−11 | 9.976 × 10−8 | 1 × 10−9 | 115 | 11 | |
5 (Re) | I | 70 | 8.406 × 10−11 | 8.462 × 10−11 | 1.034 × 10−10 | 9.920 × 10−8 | 1 × 10−9 | 84 | 08 |
II | 80 | 1.204 × 10−10 | 2.416 × 10−10 | 1.474 × 10−10 | 9.906 × 10−8 | 1 × 10−9 | 195 | 18 | |
III | 70 | 1.012 × 10−10 | 1.187 × 10−10 | 1.095 × 10−10 | 9.930 × 10−8 | 1 × 10−9 | 115 | 11 | |
IV | 70 | 4.521 × 10−10 | 5.461 × 10−10 | 6.011 × 10−10 | 9.899 × 10−8 | 1 × 10−8 | 163 | 15 | |
6 (Pr) | I | 70 | 3.614 × 10−10 | 8.054 × 10−10 | 4.766 × 10−10 | 9.955 × 10−8 | 1 × 10−8 | 191 | 18 |
II | 70 | 1.057 × 10−10 | 1.075 × 10−10 | 1.298 × 10−10 | 9.998 × 10−8 | 1 × 10−9 | 164 | 15 | |
III | 80 | 7.955 × 10−10 | 9.290 × 10−10 | 9.197 × 10−10 | 9.943 × 10−8 | 1 × 10−8 | 130 | 14 | |
IV | 80 | 1.145 × 10−10 | 1.248 × 10−10 | 2.319 × 10−10 | 9.851 × 10−8 | 1 × 10−9 | 198 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Nisar, K.S.; Jamshed, W.; Felemban, B.F.; Yahia, I.S. MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing. Coatings 2021, 11, 1554. https://doi.org/10.3390/coatings11121554
Shoaib M, Raja MAZ, Sabir MT, Nisar KS, Jamshed W, Felemban BF, Yahia IS. MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing. Coatings. 2021; 11(12):1554. https://doi.org/10.3390/coatings11121554
Chicago/Turabian StyleShoaib, Muhammad, Muhammad Asif Zahoor Raja, Muhammad Touseef Sabir, Kottakkaran Sooppy Nisar, Wasim Jamshed, Bassem F. Felemban, and I. S. Yahia. 2021. "MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing" Coatings 11, no. 12: 1554. https://doi.org/10.3390/coatings11121554
APA StyleShoaib, M., Raja, M. A. Z., Sabir, M. T., Nisar, K. S., Jamshed, W., Felemban, B. F., & Yahia, I. S. (2021). MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing. Coatings, 11(12), 1554. https://doi.org/10.3390/coatings11121554