Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. MSNs Synthesis and Characterization
2.1.1. MSNs Synthesis
2.1.2. MSNs Characterization
2.2. BPEI/MSN Coating Assembly and Characterization
2.2.1. BPEI/MSN Coating Assembly
2.2.2. BPEI/MSN Coatings Characterization
2.3. Molecular Dynamics (MD)/Density Functional Theory (DFT) Simulations of Ethanol and Methane Adsorption on the Surface of MSNs
2.4. Detection of Ethanol Vapor and Methane Gas Using Functionalized Amorphous Silicon (a-Si) Waveguides
3. Results and Discussion
3.1. Synthesized MSNs
3.2. BPEI/MSN Coating Assembly
3.3. MD/DFT Simulation of Adsorption of Ethanol and Methane Gas at the Surface of MSNs
3.4. Detection of Ethanol Vapor and Methane Gas Using Functionalized a-Si Waveguides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, B.; Khodabakhsh, A.; Metsälä, M.; Ventrillard, I.; Schmidt, F.M.; Romanini, D.; Ritchie, G.A.; te Lintel Hekkert, S.; Briot, R.; Risby, T.; et al. Laser spectroscopy for breath analysis: Towards clinical implementation. Appl. Phys. B 2018, 124, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, R.; Vasa, N.J.; Nagendra, S.M.S.; Mizaikoff, B. Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics. Molecules 2020, 25, 2227. [Google Scholar] [CrossRef]
- Lamote, K.; Brinkman, P.; Vandermeersch, L.; Vynck, M.; Sterk, P.J.; van Langenhove, H.; Thas, O.; van Cleemput, J.; Nackaerts, K.; van Meerbeeck, J.P. Breath analysis by gas chromatography-mass spectrometry and electronic nose to screen for pleural mesothelioma: A cross-sectional case-control stud. Oncotarget 2017, 8, 91593–91602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.R.; Cassells, J.; Berna, A.Z. Stability control for breath analysis using GC-MS. J. Chromatogr. B 2018, 1097, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Masikini, M.; Chowdhury, M.; Nemraoui, O. Review—Metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 2020, 167, 037537. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.K.; Badhulika, S.; Saucedo, N.M.; Mulchandani, A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal. Chem. 2012, 84, 8171–8178. [Google Scholar] [CrossRef] [Green Version]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Park, C.O.; Fergus, J.W.; Miura, N.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics 2009, 15, 261–284. [Google Scholar] [CrossRef]
- Schädle, T.; Mizaikoff, B. Mid-infrared waveguides: A perspective. Appl. Spectrosc. 2016, 70, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yue, G.; Chen, W.; Xing, Z.; Wang, J.; Wong, W.R.; Cheng, Z.; Set, S.Y.; Murugan, G.S.; Wang, X.; et al. On-chip optical gas sensors based on group-IV materials. ACS Photonics 2020, 7, 2923–2940. [Google Scholar] [CrossRef]
- Jin, T.N.; Zhou, J.C.; Lin, P.T. Real-time and non-destructive hydrocarbon gas sensing using mid-infrared integrated photonic circuits. RSC Adv. 2020, 10, 7452–7459. [Google Scholar] [CrossRef] [PubMed]
- Messica, A.; Greenstein, A.; Katzir, A. Theory of fiber-optic, evanescent-wave spectroscopy andsensors. Appl. Opt. 1996, 35, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Pandraud, G.; Koster, T.M.; Gui, C.; Dijkstra, M.; van den Berg, A.; Lambeck, P.V. Evanescent wave sensing: New features for detection in small volumes. Sens. Actuators A Phys. 2000, 85, 158–162. [Google Scholar] [CrossRef]
- Giammarco, J.; Zdyrko, B.; Petit, L.; Musgraves, J.D.; Hu, J.; Agarwal, A.; Kimerling, L.; Richardson, K.; Luzinov, I. Towards universal enrichment nanocoating for IR-ATR waveguides. Chem. Commun. 2011, 47, 9104–9106. [Google Scholar] [CrossRef] [PubMed]
- Pejcic, B.; Boyd, L.; Myers, M.; Ross, A.; Raichlin, Y.; Katzir, A.; Lu, R.; Mizaikoff, B. Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Org. Geochem. 2013, 55, 63–71. [Google Scholar] [CrossRef]
- Schädle, T.; Pejcic, B.; Myers, M.; Mizaikoff, B. Fingerprinting oils in water via their dissolved VOC pattern using mid-infrared sensors. Anal. Chem. 2014, 86, 9512–9517. [Google Scholar] [CrossRef]
- Stach, R.; Pejcic, B.; Crooke, E.; Myers, M.; Mizaikoff, B. Mid-infrared spectroscopic method for the identification and quantification of dissolved oil components in marine environments. Anal. Chem. 2015, 87, 12306–12312. [Google Scholar] [CrossRef]
- Miller, D.D.; Chuang, S.S.C. Control of CO2 Adsorption and desorption using polyethylene glycol in a tetraethylenepentamine thin film: An in situ ATR and theoretical study. J. Phys. Chem. C 2016, 120, 25489–25504. [Google Scholar] [CrossRef]
- Wilfong, W.C.; Srikanth, C.S.; Chuang, S.S.C. In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films. ACS Appl. Mater. Interfaces 2014, 6, 13617–13626. [Google Scholar] [CrossRef] [Green Version]
- Al Husseini, D.; Zhou, J.; Willhelm, D.; Hastings, T.; Day, G.S.; Zhou, H.-C.; Coté, G.L.; Qian, X.; Gutierrez-Osuna, R.; Lin, P.T.; et al. All-nanoparticle layer-by-layer coatings for mid-IR on-chip gas sensing. Chem. Commun. 2020, 56, 14283–14286. [Google Scholar] [CrossRef]
- Satheeshkumar, E.; Yang, J. Preparation and characterization of silver film coated ZnO nanowire gas sensors based on the infrared surface enhancement effect for detection of VOCs. RSC Adv. 2014, 4, 19331–19337. [Google Scholar] [CrossRef] [Green Version]
- Zhuk, A.; Sukhishvili, S.A. Stimuli-responsive layer-by-layer nanocomposites. Soft Matter 2013, 9, 5149–5154. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107. [Google Scholar] [CrossRef]
- Qiu, H.; Lee, W.Y.; Sukhishvili, S.A. Layer-by-layer self-assembly of ceramic particles for coating complex shape substrates. J. Am. Ceram. Soc. 2006, 89, 1180–1187. [Google Scholar] [CrossRef]
- Palaniappan, A.; Li, X.; Tay, F.E.H.; Li, J.; Su, X. Cyclodextrin functionalized mesoporous silica films on quartz crystal microbalance for enhanced gas sensing. Sens. Actuators B Chem. 2006, 119, 220–226. [Google Scholar] [CrossRef]
- Chang, Y.C.; Bai, H.; Li, S.N.; Kuo, C.N. Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument. Sensors 2011, 11, 4060–4072. [Google Scholar] [CrossRef] [Green Version]
- Sebők, D.; Janovák, L.; Kovács, D.; Sápi, A.; Dobó, D.G.; Kukovecz, Á.; Kónya, Z.; Dékány, I. Room temperature ethanol sensor with sub-ppm detection limit: Improving the optical response by using mesoporous silica foam. Sens. Actuators B Chem. 2017, 243, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Echeverría, J.C.; de Vicente, P.; Estella, J.; Garrido, J.J. A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film. Talanta 2012, 99, 433–440. [Google Scholar] [CrossRef]
- Amonette, J.E.; Matyáš, J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous Mater. 2017, 250, 100–119. [Google Scholar] [CrossRef]
- Han, B.-H.; Manners, I.; Winnik, M.A. Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films. Chem. Mat. 2005, 17, 3160–3171. [Google Scholar] [CrossRef]
- Danan, Y.; Ilovitsh, T.; Ramon, Y.; Malka, D.; Liu, D.; Zalevsky, Z. Silicon-coated gold nanoparticles nanoscopy. J. Nanophotonics 2016, 10, 036015. [Google Scholar] [CrossRef]
- Pinhas, H.; Malka, D.; Danan, Y.; Sinvani, M.; Zalevsky, Z. Design of fiber-integrated tunable thermo-optic C-band filter based on coated silicon slab. J. Eur. Opt. Soc. Rapid Publ. 2017, 13, 32. [Google Scholar] [CrossRef] [Green Version]
- Ioudashkin, E.; Malka, D. A Three demultiplexer C-band using angled multimode interference in GaN–SiO2 slot waveguide structures. Nanomaterials 2020, 10, 2338. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Chung, P.-W.; Lin, V.S.Y. Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem. Mat. 2010, 22, 5093–5104. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067–16080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304. [Google Scholar] [CrossRef]
- Ewing, C.S.; Bhavsar, S.; Veser, G.; McCarthy, J.J.; Johnson, J.K. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. Langmuir 2014, 30, 5133–5141. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Munetoh, S.; Motooka, T.; Moriguchi, K.; Shintani, A. Interatomic potential for Si–O systems using Tersoff parameterization. Comput. Mater. Sci. 2007, 39, 334–339. [Google Scholar] [CrossRef]
- Parks, G.A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Landau, L.; Levich, B. Dragging of a liquid by a moving plate. Acta Physicochim. URSS 1942, 17, 42–54. [Google Scholar]
- Faustini, M.; Boissiere, C.; Nicole, L.; Grosso, D. From chemical solutions to inorganic nanostructured materials: A journey into evaporation-driven processes. Chem. Mat. 2014, 26, 709–723. [Google Scholar] [CrossRef]
- Faustini, M.; Louis, B.; Albouy, P.A.; Kuemmel, M.; Grosso, D. Preparation of sol−gel films by dip-coating in extreme conditions. J. Phys. Chem. C 2010, 114, 7637–7645. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: Vienna, Austria, 2016; pp. 233–261. [Google Scholar]
- Tan, S.; Erol, M.; Sukhishvili, S.; Du, H. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced raman scattering. Langmuir 2008, 24, 4765–4771. [Google Scholar] [CrossRef]
- Erol, M.; Du, H.; Sukhishvili, S. Control of specific attachment of proteins by adsorption of polymer layers. Langmuir 2006, 22, 11329–11336. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tan, S.; Oo, M.K.K.; Pristinski, D.; Sukhishvili, S.; Du, H. Towards full-length accumulative surface-enhanced raman scattering-active photonic crystal fibers. Adv. Mater. 2010, 22, 2647–2651. [Google Scholar] [CrossRef] [PubMed]
- Brixner, B. Refractive-index interpolation for fused silica. J. Opt. Soc. Am. 1967, 57, 674–676. [Google Scholar] [CrossRef]
- Penta, N.K.; Peethala, B.C.; Amanapu, H.P.; Melman, A.; Babu, S.V. Role of hydrogen bonding on the adsorption of several amino acids on SiO2 and Si3N4 and selective polishing of these materials using ceria dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 429, 67–73. [Google Scholar] [CrossRef]
- Liu, D.; Ma, G.; Xu, M.; Allen, H.C. Adsorption of ethylene glycol vapor on α-Al2O3 (0001) and amorphous SiO2 surfaces: Observation of molecular orientation and surface hydroxyl groups as sorption sites. Environ. Sci. Technol. 2005, 39, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Stievano, L.; Lambert, J.F. Adsorption and thermal condensation mechanisms of amino acids on oxide supports. 1. glycine on silica. Langmuir 2004, 20, 914–923. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Husseini, D.; Karanth, Y.; Zhou, J.; Willhelm, D.; Qian, X.; Gutierrez-Osuna, R.; Coté, G.L.; Lin, P.T.; Sukhishvili, S.A. Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing. Coatings 2021, 11, 118. https://doi.org/10.3390/coatings11020118
Al Husseini D, Karanth Y, Zhou J, Willhelm D, Qian X, Gutierrez-Osuna R, Coté GL, Lin PT, Sukhishvili SA. Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing. Coatings. 2021; 11(2):118. https://doi.org/10.3390/coatings11020118
Chicago/Turabian StyleAl Husseini, Diana, Yashaswini Karanth, Junchao Zhou, Daniel Willhelm, Xiaofeng Qian, Ricardo Gutierrez-Osuna, Gerard L. Coté, Pao Tai Lin, and Svetlana A. Sukhishvili. 2021. "Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing" Coatings 11, no. 2: 118. https://doi.org/10.3390/coatings11020118
APA StyleAl Husseini, D., Karanth, Y., Zhou, J., Willhelm, D., Qian, X., Gutierrez-Osuna, R., Coté, G. L., Lin, P. T., & Sukhishvili, S. A. (2021). Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing. Coatings, 11(2), 118. https://doi.org/10.3390/coatings11020118