Durable Soft Mold for Imprinting of High-Adhesive Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of PUA Soft Mold
2.2. Metal Deposition on PUA Soft Mold
2.3. Self-Assembled Monolayer (SAM) Treatment on PUA Soft Mold
2.4. Attaching PUA Soft Mold on Imprint Roll
2.5. Contact Angle Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.-J.; Kim, H.N.; Bae, W.G.; Suh, K.-Y. Modulus-and surface energy-tunable ultraviolet-curable polyurethane acrylate: Properties and applications. J. Mater. Chem. 2011, 21, 14325–14335. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.; Lv, X.; Xu, J.; Sun, X.; Zhang, Z.; Wang, H.; Deng, Y. Fabrication of micro free-flow electrophoresis chip by photocurable monomer binding microfabrication technique for continuous separation of proteins and their numerical simulation. Analyst 2012, 137, 4482–4489. [Google Scholar] [CrossRef] [PubMed]
- Dupont, E.P.; Luisier, R.; Gijs, M.A. NOA 63 as a UV-curable material for fabrication of microfluidic channels with native hydrophilicity. Microelectron. Eng. 2010, 87, 1253–1255. [Google Scholar] [CrossRef]
- Carson, D.; Hnilova, M.; Yang, X.; Nemeth, C.L.; Tsui, J.H.; Smith, A.S.; Jiao, A.; Regnier, M.; Murry, C.E.; Tamerler, C. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl. Mater. Interfaces 2016, 8, 21923–21932. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Tsui, J.H.; Jang, S.I.; Lee, J.H.; Park, S.; Mun, K.; Boo, Y.C.; Kim, D.-H. Combined effects of substrate topography and stiffness on endothelial cytokine and chemokine secretion. ACS Appl. Mater. Interfaces 2015, 7, 4525–4532. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.A.; Burke, K.A.; Mather, P.T.; Henderson, J.H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials 2011, 32, 2285–2293. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lim, J.R.; Kim, Y.S. Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosens. Bioelectron. 2006, 21, 2188–2193. [Google Scholar] [CrossRef]
- DiOrio, A.M.; Luo, X.; Lee, K.M.; Mather, P.T. A functionally graded shape memory polymer. Soft Matter 2011, 7, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-L.; Lee, J.-J.; Oh, Y.-J.; Kim, D.-E. Smart wearable heaters with high durability, flexibility, water-repellent and shape memory characteristics. Compos. Sci. Technol. 2017, 152, 173–180. [Google Scholar] [CrossRef]
- Nam, S.; Song, M.; Kim, D.-H.; Cho, B.; Lee, H.M.; Kwon, J.-D.; Park, S.-G.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci. Rep. 2014, 4, 4788. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lee, N.Y.; Lim, J.R.; Lee, M.J.; Park, S. Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication. Chem. Mater. 2005, 17, 5867–5870. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, N.Y.; Lim, J.R.; Kim, J.B.; Kim, M.; Baik, H.K.; Kim, Y.S. Antiadhesion Surface Treatments of Molds for High-Resolution Unconventional Lithography. Adv. Mater. 2006, 18, 3115–3119. [Google Scholar] [CrossRef]
- Hirai, Y.; Yoshida, S.; Okamoto, A.; Tanaka, Y.; Endo, M.; Irie, S.; Nakagawa, H.; Sasago, M. Mold surface treatment for imprint lithography. J. Photopolym. Sci. Technol. 2001, 14, 457–462. [Google Scholar] [CrossRef]
- Zhang, T.; Kobrin, B.; Wanebo, M.; Nowak, R.; Yi, R.; Chinn, J.; Bender, M.; Fuchs, A.; Otto, M. Vapor Deposited Release Layers for Nanoimprint Lithography; Emerging Lithographic Technologies X; International Society for Optics and Photonics: San Jose, CA, USA, 2006; p. 615117. [Google Scholar]
- Resnick, D.; Dauksher, W.; Mancini, D.; Nordquist, K.; Bailey, T.; Johnson, S.; Stacey, N.; Ekerdt, J.G.; Willson, C.G.; Sreenivasan, S. Imprint lithography for integrated circuit fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2003, 21, 2624–2631. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.-Y.; Li, Z.; Wu, W.; Chen, Y.; Olynick, D.L.; Wang, S.-Y.; Tong, W.M.; Williams, R.S. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 2005, 21, 1158–1161. [Google Scholar] [CrossRef]
- Lötters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145. [Google Scholar] [CrossRef]
- Good, R.J.; van Oss, C.J. The modern theory of contact angles and the hydrogen bond components of surface energies. In Modern Approaches to Wettability; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–27. [Google Scholar]
- Good, R.J. Surface free energy of solids and liquids: Thermodynamics, molecular forces, and structure. J. Colloid Interface Sci. 1977, 59, 398–419. [Google Scholar] [CrossRef]
- Smith, R.; Pitrola, R. Influence of casting substrate on the surface free energy of various polyesters. J. Appl. Polym. Sci. 2002, 83, 997–1008. [Google Scholar] [CrossRef]
- Tanaka, D.; Buenger, D.; Hildebrandt, H.; Moeller, M.; Groll, J. Unidirectional control of anisotropic wetting through surface modification of PDMS microstructures. Langmuir 2013, 29, 12331–12336. [Google Scholar] [CrossRef]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, P.S.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 2009, 26, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Pirat, C.; Sbragaglia, M.; Borkent, B.; Wessling, M.; Lohse, D.; Lammertink, R.G. Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity. Eur. Phys. J. E 2009, 29, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, G.; Oh, J.; Van Den Ende, D.; Lammertink, R.G.; Mugele, F. Electrical switching of wetting states on superhydrophobic surfaces: A route towards reversible Cassie-to-Wenzel transitions. Phys. Rev. Lett. 2011, 106, 014501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsberg, P.; Nikolajeff, F.; Karlsson, M. Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 2011, 7, 104–109. [Google Scholar] [CrossRef]
- Jeong, H.E.; Lee, S.H.; Kim, J.K.; Suh, K.Y. Nanoengineered multiscale hierarchical structures with tailored wetting properties. Langmuir 2006, 22, 1640–1645. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Rudawska, A. Assessment of surface preparation for the bonding/adhesive technology. In Surface Treatment in Bonding Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 227–275. [Google Scholar]
- Advincula, R.C. Conducting polymers with superhydrophobic effects as anticorrosion coating. In Intelligent Coatings for Corrosion Control; Elsevier: Amsterdam, The Netherlands, 2015; pp. 409–430. [Google Scholar]
- He, B.; Patankar, N.A.; Lee, J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 2003, 19, 4999–5003. [Google Scholar] [CrossRef]
- Lee, L.-H. Fundamentals of Adhesion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kim, Y.-H.; Kim, J.; Walker, G.; Feger, C.; Kowalczyk, S. Adhesion and interface investigation of polyimide on metals. J. Adhes. Sci. Technol. 1988, 2, 95–105. [Google Scholar] [CrossRef]
Type of Soft Mold | Wenzel State Contact Angle (°) | Calibrated Contact Angle (°) | Surface Energy (mJ/m2) |
---|---|---|---|
PDMS soft mold | 129.9 ± 4.0 | 111.6 | 7.3 |
PUA soft mold (No deposition) | 97.4 ± 7.8 | 94.2 | 15.6 |
PUA soft mold (Au deposition) | 148.5 ± 3.2 | 119.2 | 4.8 |
PUA soft mold (Ni deposition) | 142.8 ± 2.8 | 117.2 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, S.H.; Kwak, M.K. Durable Soft Mold for Imprinting of High-Adhesive Resin. Coatings 2021, 11, 137. https://doi.org/10.3390/coatings11020137
Lee J, Lee SH, Kwak MK. Durable Soft Mold for Imprinting of High-Adhesive Resin. Coatings. 2021; 11(2):137. https://doi.org/10.3390/coatings11020137
Chicago/Turabian StyleLee, Jihoon, Sung Ho Lee, and Moon Kyu Kwak. 2021. "Durable Soft Mold for Imprinting of High-Adhesive Resin" Coatings 11, no. 2: 137. https://doi.org/10.3390/coatings11020137
APA StyleLee, J., Lee, S. H., & Kwak, M. K. (2021). Durable Soft Mold for Imprinting of High-Adhesive Resin. Coatings, 11(2), 137. https://doi.org/10.3390/coatings11020137