Active Carbon-Based Nanomaterials in Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon-Based Nanomaterials
- graphene oxide (GO);
- amorphous carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF);
- rhodamine modified detonated nanodiamond (MDCHF);
- plasma-chemically modified detonated nanodiamond (MDP1);
- chemically modified detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH);
- non-modified pure detonated nanodiamond particles (DND).
Preparation of Rhodamine Modified Detonated Nanodiamond (MDCHF)
2.2. SEM Analysis
2.3. XRD Analysis
2.4. Confocal Microscope Analysis
2.5. Dynamic Light Scattering (DLS) Analysis
2.6. Statistical Analysis
2.7. Raman Spectroscopy
2.8. Antibacterial Test
2.9. Preparation of Food Films Modified with Carbon-Based Nanomaterials
2.10. Adhesion Tests—Fluorescence Microscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danilenko, V.V. Nanodiamonds: Problems and prospects. J. Superhard Matter. 2010, 32, 301–310. [Google Scholar] [CrossRef]
- Mitura, K.; Wyrebski, K.; Zarzycki, P.K. Bioactive food packaging with nanodiamond particles manufactured by detonation and plasma-chemical methods. In Food Packaging, 1st ed.; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 7, pp. 295–328. [Google Scholar]
- Mitura, K.; Włodarczyk, E. Fluorescent nanodiamonds in biomedical applications. J. AOAC 2018, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mitura, K.; Zarzycki, P.K. Biocompatibiliy and toxicity of allotropic forms of carbon in food packaging. In Food Materials Science, 2nd ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 19, pp. 73–102. [Google Scholar]
- Zarzycki, P.K.; Świderska-Dąbrowska, R.; Piaskowski, K.; Lewandowska, L.; Fenert, B.; Mitura, K.A.; Baran, J.M. Carbon and related nanomaterials as active media for analytical, biomedical and wastewater processing applications. In Pure and Functionalized Carbon-Based Nanomaterials, Analytical, Biomedical, Civil and Environmental Engineering Applications, 1 st ed.; Zarzycki, P.K., Ed.; CRC Press: Boca Raton, FL, USA; Taylor&Francis Group: Oxfordshire, UK, 2020. [Google Scholar] [CrossRef]
- Mitura, K.; Gisterek, I.; Ceynowa, P.; Wachowicz, A.; Pich, G.; Woś, R.; Adach, K. Badania mikrobiologiczne bioaktywnych proszków nanodiamentowych modyfikowanych chemicznie. In Postępy inżynierii biomedycznej; Leniowska, L., Nawrat, Z., Eds.; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Polska, 2013; pp. 157–167. [Google Scholar]
- Shenderova, O.A.; McGuire, G. Nanomaterials Handbook; Gogotsi, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 203–237. [Google Scholar]
- Zarzycki, P.K. Detection and Analysis of Microbes, Bioanalytes, and Micropollutants, Focusing on Food and Environmental Samples, Using Nanoparticle-Based Detection Systems, Microfluidic Analytical Devices, and Related Techniques. J. AOAC 2017, 100, 893–894. [Google Scholar] [CrossRef] [PubMed]
- Prasek, M.; Sawosz, E.; Jaworski, S. Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Res. Lett. 2013, 8, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chwalibóg, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orłowski, P.; Sokołowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed. 2010, 5, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Sawosz, E.; Chwalibóg, A.; Mitura, K.; Mitura, S.; Szeliga, J.; Niemiec, T.; Rupiewicz, M.; Grodzik, M.; Sokołowska, A. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes. J. Nanosci. Nanotechnol. 2011, 11, 1–7. [Google Scholar] [CrossRef]
- Kurantowicz, N.; Sawosz, E.; Jaworski, S.; Kutwin, M.; Strojny, B.; Wierzbicki, M.; Szeliga, J.; Hotowy, A.; Lipinska, L.; Kozinski, R.; et al. Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. Lett. 2015, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sawosz, E.; Jaworski, S.; Kutwin, M.; Hotowy, A.; Wierzbicki, M.; Grodzik, M.; Kurantowicz, N.; Strojny, B.; Lipinska, L.; Chwalibóg, A. Toxicity of pristine graphene in experiments in a chicken embryo model. Int. J. Nanomed. 2014, 9, 3913–3922. [Google Scholar]
- Jaworski, S.; Sawosz, E.; Kutwin, M.; Wierzbicki, M.; Hinzman, M.; Grodzik, M.; Winnicka, A.; Lipinska, L.; Włodyga, K.; Chwalibog, A. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. Int. J. Nanomed. 2015, 10, 1585–1596. [Google Scholar]
- Epperla, C.P.; Mohan, N.; Chang, C.-W.; Chen, C.-C.; Chang, H.-C. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. Small 2015, 11, 6097–6105. [Google Scholar] [CrossRef] [PubMed]
- Beveratos, A.; Kühn, S.; Brouri, R.; Gacoin, T.; Poizat, J.-P.; Grangier, P. Room temperature stable single-photon source. Eur. Phys. J. D 2002, 18, 191–196. [Google Scholar] [CrossRef]
- Lien, Z.-Y.; Hsu, T.-C.; Liu, K.-K.; Liao, W.-S.; Hwang, K.-C.; Chao, J.-I. Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond. Biomaterials 2012, 33, 6172–6185. [Google Scholar] [CrossRef] [PubMed]
- Neburkova, J.; Vavra, J.; Cigler, P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 43–53. [Google Scholar] [CrossRef]
- Shimoni, O.; Shi, B.; Adlard, P.A.; Bush, A.I. Delivery of Fluorescent Nanoparticles to the Brain. J. Mol. Neurosci. 2016, 60, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Lam, R.; Xu, X.; Chow, E.K.; Kim, H.J.; Ho, D. Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy. Adv. Mater. 2011, 23, 4770–4775. [Google Scholar] [CrossRef]
- Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-H.; Lee, H.-W.; Lin, R.-J.; Huang, C.-W.; Liao, Y.-C.; Chen, Y.-T.; Fang, J.-M.; Lee, T.-C.; Yu, A.-L.; Chang, H.-C. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. Small 2015, 11, 4394–4402. [Google Scholar] [CrossRef]
- Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the nanobiointerface of fluorescent nanodiamonds: Highly selective targeting of glioma cancer cells. Nanoscale 2015, 7, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Cushena, M.; Kerryb, J.; Morrisc, M.; Cruz-Romeroband, M.; Cumminsa, E. Nanotechnologies in the food industry: Recent, developments, risks and regulation. Trends Food Sci. Technol. 2012, 24, 30–46. [Google Scholar] [CrossRef]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Rossi, M.; Cubaddac, F.; Dinid, L.; Terranovae, M.L.; Aurelic, F.; Sorbof, A.; Passeri, D. Scientific basic of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol. 2014, 40, 127–148. [Google Scholar] [CrossRef] [Green Version]
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in the meat industry. Meat Sci. 2002, 62, 373–380. [Google Scholar] [CrossRef]
- Limbo, S.; Khaneghah, A.M. Active packaging of foods and its combination with electron beam processing. In Electron Beam Pasteurization and Complementary Food Processing Technologies; Pillai, S., Shayanfar, S., Eds.; Woodhead Publishing: Sawston, UK, 2015; Volume 11, pp. 195–217. [Google Scholar]
- Khaneghaha, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, S.; Priyadarshini, S.R.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Sothornvit, R. Nanostructured materials for food packaging systems: New functional properties. Curr. Opin. Food Sci. 2019, 25, 82–87. [Google Scholar] [CrossRef]
- Sozer, N.; Kokini, J.L. Nanotechnology and its applications in food sector. Trends Biotechnol. 2009, 27, 82–89. [Google Scholar] [CrossRef]
- Majid, I.; Ahmad Nayik, G.; Mohammad Dar, S.; Nanda, V. Novel food packaging technologies: Innovations and future prospective. J. Saudi Soc. Agric. Sci. 2016, 17, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Missaoui, W.N.; Arnold, R.D.; Cummings, B.S. Toxicological status of nanoparticles: What we know and what we don’t know. Chem. Biol. Interact. 2018, 295, 1–2. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohyd. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef]
- Garcia, C.V.; Shin, G.H.; Kim, J.T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci. Technol. 2018, 82, 21–31. [Google Scholar] [CrossRef]
- Abreu, A.S.; Oliveira, M.; de Sá, A.; Rodrigues, R.M.; Cerqueira, M.A.; Vicente, A.A.; Machado, A.V. Antimicrobial nanostructured starch based films for packaging. Carbohyd. Polym. 2015, 129, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Azeredo, H.M.C. Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 2013, 30, 56–69. [Google Scholar] [CrossRef]
- Fabra, M.J.; Busolo, M.A.; Lopez-Rubio, A.; Lagaron, J.M. Nanostructured biolayers in food packaging. Trends Food Sci. Technol. 2013, 31, 79–87. [Google Scholar] [CrossRef]
- Bridier, A.; Sanchez-Vizuete, P.; Guilbaud, M.; Piard, J.C.; Naïtali, M.; Briandet, R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015, 45, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Freire, C.S.R. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Marinello, F.; La Storia, A.; Mauriello, G.; Passeri, D. Atomic Force Micrscopy techniques to investigate activated food packaging materials. Trends Food Sci. Technol. 2018, 87, 84–93. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014, 22, 105–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Hwang, H.M. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 2016, 24, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathakoti, K.; Manubolu, M.; Hwang, H.-M. Nanostructures: Current uses and future applications in food science. J. Food Drug Anal. 2017, 25, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Donglu, F.; Wenjian, Y.; Kimatu, B.M.; Mariga, A.M.; Liyan, Z.; Xinxin, A.; Qiuhui, H. Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov. Food Sci. Emerg. 2016, 33, 489–497. [Google Scholar] [CrossRef]
- Dudefoi, W.; Villares, A.; Peyron, S.; Moreau, C.; Ropers, M.H.; Gontard, N.; Cathala, B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innov. Food Sci. Emerg. 2018, 46, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Maas, M. Carbon Nanomaterials as Antibacterial Colloids. Materials 2016, 9, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szunerits, S.; Barras, A.; Boukherroub, R. Antibacterial Applications of Nanodiamonds. Int. J. Environ. Res. Public Health 2016, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Osawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 2007, 111, 2–7. [Google Scholar] [CrossRef]
- Wąsowicz, M.; Ficek, M.; Wróbel, M.S.; Chakraborty, R.; Fixler, D.; Wierzba, P.; Jedrzejewska-Szczerska, M. Hemocompatibility of Modified Nanodiamonds. Materials 2017, 10, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikov, V.A.; Makarov, S.V.; Bogdanov, D.G.; Bogdanov, A.S. The structure of detonation nanodiamond particles. In Proceedings of the AIP Conference Proceedings, Yogyakarta, Indonesia, 25–26 January 2016; Volume 1785, pp. 040045-1–040045-4. [Google Scholar] [CrossRef] [Green Version]
- Bakowicz–Mitura, K.; Bartosz, G.; Mitura, S. Influence of diamond powder particles on human gene expression. Surf. Coat. Technol. 2007, 201, 6131–6135. [Google Scholar] [CrossRef]
- Solarska, K.; Gajewska, A.; Bartosz, G.; Mitura, K. Induction of apoptosis in human endothelial cells by nanodiamond particles. J. Nanosci. Nanotechnol. 2012, 12, 5117–5121. [Google Scholar] [CrossRef]
- Gronwald, H.; Mitura, K.; Volesky, L.; Kejzlar, P.; Szczypinski, M.; Kubala, E.; Strzelecka, P.; Grzegocka, M.; Baszuk, P.; Skomro, P.; et al. The influence of suspension containing nanodiamonds on morphology of the tooth tissue in atomic force microscope observations. Biomed. Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Liu, X.; Zhang, W.; Zeng, Z.; Liu, Z.; Zhang, C.; Liu, Y.; Shao, B.; Liang, Q.; Tang, W.; et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environ. Int. 2019, 134, 105298. [Google Scholar] [CrossRef]
- Niemiec, T.; Szmidt, M.; Sawosz, E.; Grodzik, M.; Mitura, K. The effect of diamond nanoparticles on redox and immune parameters in rats. J. Nanosci. Nanotechnol. 2011, 11, 9072–9077. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 2019, 18, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedicalapplications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mitura, K.; Wilczek, P.; Niemiec-Cyganek, A.; Morenc, M.; Dudek, M.; Sobczyk-Guzenda, A.; Fraczyk, J.; Kolesińska, B. Detonation nanodiamond particles modified by non-steroidal anti-inflammatory drugs in vitro examination. Eng. Biomater. 2017, 20, 12–20. [Google Scholar]
- Kolesinska, B.; Rozniakowski, K.K.; Fraczyk, J.; Relich, I.; Papini, A.M.; Kaminski, Z.J. The Effect of Counterion and Tertiary Amine on the Efficiency of N-Triazinylammonium Sulfonates in Solution and Solid-Phase Peptide Synthesis. Eur. J. Org. Chem. 2015, 2, 401–408. [Google Scholar] [CrossRef]
- Fraczyk, J.; Walczak, M.; Szymanski, L.; Kolacinski, Z.; Wrzosek, H.; Majsterek, I.; Przybylowska-Sygut, K.; Kaminski, Z.J. Carbon nanotubes functionalized with folic acid attached via biomimetic peptide linker. Nanomedicine 2017, 12, 2161–2182. [Google Scholar] [CrossRef] [PubMed]
- Fraczyk, J.; Rosowski, A.; Kolesinska, B.; Koperkiewcz, A.; Sobczyk-Guzenda, A.; Kaminski, Z.J.; Dudek, M. Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives. Nanomaterials 2018, 8, 908. [Google Scholar] [CrossRef] [Green Version]
- SN 195920-ASTM E2922. Textile Fabrics—Determination of the Antibacterial Activity—Agar Diffusion Plate Test. Available online: https://standards.globalspec.com/std/906029/SN%20195920 (accessed on 28 January 2021).
- Mitura, K. HR TEM examinations of nanodiamond particles for biomedical application. J. Achiev. Mater. Manuf. Eng. 2009, 37, 317–322. [Google Scholar]
- Bogdanov, D.; Plotnikova, V.; Bogdanov, A.; Makarov, S.; Vins, V.; Yelisseyev, A.; Lin, V.; Chepurov, A. Consolidation of nanocrystals of detonation diamonds at high-pressure high temperature sintering. Int. J. Refract. Hard Met. 2018, 71, 101–105. [Google Scholar] [CrossRef]
- Krysthal, A.P.; Mchedlov-Petrossyan, N.O.; Laguta, A.N.; Kirklya, N.N.; Kruk, A.; Osawa, E. Primary detonation nanodiamond particles: Their core-shell structure and the behavior in organo-hydrosols. Colloids Surf. A Phys. Eng. Asp. 2020, 614, 126079. [Google Scholar] [CrossRef]
- Mitura, S. Nucleation of diamond powder particles in an RF methane plasma. J. Cryst. Growth 1987, 80, 417–424. [Google Scholar] [CrossRef]
- Goottenbos, B.; Van der Mei, H.C.; Busscher, H.J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J. Mater. Sci. Mater. Med. 1999, 10, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.L.; Hill, J.E.; Redman, J.A.; Elimelech, M. Influence of Growth Phase on Adhesion Kinetics of Escherichia coli D21g. Appl. Environ. Microbiol. 2005, 71, 3093–3099. [Google Scholar] [PubMed] [Green Version]
- Sheng, X.; Peng Ting, Y.; Olavi Pehkonen, S. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. J. Colloid Interface Sci. 2008, 321, 256–264. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Food Packaging | GO | RF | MDCHF | MDP1 | MDCHPOH | DND |
---|---|---|---|---|---|---|---|
S. aureus | mustard | nd | nd | − | nd | + | nd |
ice crem | nd | nd | nd | −− | ++ | nd | |
ketchup | nd | nd | − | + | nd | nd | |
coffee | − | nd | nd | nd | + | nd | |
S. mutants | mustard | nd | nd | nd | nd | + | nd |
ice crem | − | nd | nd | + | nd | nd | |
ketchup | − | nd | + | nd | nd | nd | |
coffee | −− | nd | ++ | nd | nd | nd | |
P. aeruginosa | mustard | ++ | nd | nd | − | nd | nd |
ice crem | nd | − | nd | nd | nd | nd | |
ketchup | − | nd | nd | nd | + | nd | |
coffee | −− | nd | nd | + | nd | nd | |
E. coli | mustard | nd | + | nd | −− | nd | nd |
ice crem | nd | − | nd | nd | ++ | nd | |
ketchup | nd | + | nd | nd | nd | nd | |
coffee | nd | − | nd | nd | + | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitura, K.; Kornacka, J.; Kopczyńska, E.; Kalisz, J.; Czerwińska, E.; Affeltowicz, M.; Kaczorowski, W.; Kolesińska, B.; Frączyk, J.; Bakalova, T.; et al. Active Carbon-Based Nanomaterials in Food Packaging. Coatings 2021, 11, 161. https://doi.org/10.3390/coatings11020161
Mitura K, Kornacka J, Kopczyńska E, Kalisz J, Czerwińska E, Affeltowicz M, Kaczorowski W, Kolesińska B, Frączyk J, Bakalova T, et al. Active Carbon-Based Nanomaterials in Food Packaging. Coatings. 2021; 11(2):161. https://doi.org/10.3390/coatings11020161
Chicago/Turabian StyleMitura, Katarzyna, Joanna Kornacka, Elżbieta Kopczyńska, Jacek Kalisz, Ewa Czerwińska, Maciej Affeltowicz, Witold Kaczorowski, Beata Kolesińska, Justyna Frączyk, Totka Bakalova, and et al. 2021. "Active Carbon-Based Nanomaterials in Food Packaging" Coatings 11, no. 2: 161. https://doi.org/10.3390/coatings11020161
APA StyleMitura, K., Kornacka, J., Kopczyńska, E., Kalisz, J., Czerwińska, E., Affeltowicz, M., Kaczorowski, W., Kolesińska, B., Frączyk, J., Bakalova, T., Svobodová, L., & Louda, P. (2021). Active Carbon-Based Nanomaterials in Food Packaging. Coatings, 11(2), 161. https://doi.org/10.3390/coatings11020161