Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Sensing Membrane Preparation
2.3. Instrumentation
3. Results and Discussion
3.1. CO2 Sensing Scheme
3.2. Membrane Composition
3.3. Analytical Characterization of the Sensing Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Gao, W.-W.; Zhang, F.-X.; Zhang, G.-X.; Zhou, C.-H. Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem. Eng. J. 2015, 99, 67–84. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Ovejero-Perez, A.; Navarro, P.; Larriba, M.; Ayuso, M.; García, J.; Rodríguez, F. Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction. J. Chem. Thermodyn. 2019, 131, 340–346. [Google Scholar] [CrossRef]
- Claus, J.; Sommer, F.O.; Kragl, U. Ionic liquids in biotechnology and beyond. Solid State Ion. 2018, 314, 119–128. [Google Scholar] [CrossRef]
- Arumugam, V.; Redhi, G.; Gengan, R.M. Chapter 12—The application of ionic liquids in nanotechnology. In Fundamentals of Nanoparticles; Barhoum, A., Hamdy Makhlouf, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 371–400. [Google Scholar] [CrossRef]
- Liu, H.; Yu, H. Ionic liquids for electrochemical energy storage devices applications. J. Mater. Sci. Technol. 2019, 35, 674–686. [Google Scholar] [CrossRef]
- Martins, V.L.; Torresi, R.M. Ionic liquids in electrochemical energy storage. Curr. Opin. Electrochem. 2018, 9, 26–32. [Google Scholar] [CrossRef]
- Rostami, S.; Mehdinia, A.; Jabbari, A.; Kowsari, E.; Niroumand, R.; Booth, T.J. Colorimetric sensing of dopamine using hexagonal silver nanoparticles decorated by task-specific pyridinum based ionic liquid. Sens. Actuators B Chem. 2018, 271, 64–72. [Google Scholar] [CrossRef]
- Rauf, S.; Nawaz, M.A.H.; Muhammad, N.; Raza, R.; Shahid, S.A.; Marty, J.L.; Hayat, A. Protic ionic liquids as a versatile modulator and stabilizer in regulating artificial peroxidase activity of carbon materials for glucose colorimetric sensing. J. Mol. Liq. 2017, 243, 333–340. [Google Scholar] [CrossRef]
- Yu, H.A.; DeTata, D.A.; Lewis, S.W.; Silvester, D.S. Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. TrAC Trends Anal. Chem. 2017, 97, 374–384. [Google Scholar] [CrossRef]
- Akhmetshina, A.I.; Gumerova, O.R.; Atlaskin, A.A.; Petukhov, A.N.; Sazanova, T.S.; Yanbikov, N.R.; Nyuchev, A.V.; Razov, E.N.; Vorotyntsev, I.V. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Sep. Purif. Technol. 2017, 176, 92–106. [Google Scholar] [CrossRef]
- Baltes, N.; Beyle, F.; Freiner, S.; Geier, F.; Joos, M.; Pinkwart, K.; Rabenecker, P. Trace detection of oxygen—ionic liquids in gas sensor design. Talanta 2013, 116, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yang, X.; Shu, Y.; Chen, X.; Wang, J. Ionic liquid-based slab optical waveguide sensor for the detection of ammonia in human breath. J. Colloid Interface Sci. 2018, 512, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Perez de Vargas-Sansalvador, I.M.; Erenas, M.M.; Diamond, D.; Quilty, B.; Capitan-Vallvey, L.F. Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sens. Actuators B Chem. 2017, 253, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Behera, K.; Pandey, S.; Kadyan, A.; Pandey, S. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors. Sensors 2015, 15, 30487–30503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapurch, C.J.; Abcejo, A.S.; Pasternak, J.J. The relationship between end-expired carbon dioxide tension and severity of venous air embolism during sitting neurosurgical procedures—A contemporary analysis. J. Clin. Anesth. 2018, 51, 49–54. [Google Scholar] [CrossRef]
- Laporte-Uribe, J.A. The role of dissolved carbon dioxide in both the decline in rumen pH and nutritional diseases in ruminants. Anim. Feed Sci. Technol. 2016, 219, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Benjamin, N.I. Determinants of industrial carbon dioxide emissions growth in Shanghai: A quantile analysis. J. Clean. Prod. 2019, 217, 776–786. [Google Scholar] [CrossRef]
- Yu, M.; Sediq, A.S.; Zhang, S.; Nejadnik, M.R.; Every, H.A.; Jiskoot, W.; Witkamp, G.-J. Towards the development of a supercritical carbon dioxide spray process to coat solid protein particles. J. Supercrit. Fluids 2018, 141, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Puligundla, P.; Jung, J.; Ko, S. Carbon dioxide sensors for intelligent food packaging applications. Food Control 2012, 25, 328–333. [Google Scholar] [CrossRef]
- Soriano, A.N.; Doma, B.T.; Li, M.-H. Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Tetrafluoroborate. J. Chem. Eng. Data 2008, 53, 2550–2555. [Google Scholar] [CrossRef]
- Wu, J.; Yin, M.-J.; Seefeldt, K.; Dani, A.; Guterman, R.; Yuan, J.; Zhang, A.P.; Tam, H.-Y. In Situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid). Sens. Actuators B Chem. 2018, 259, 833–839. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Garcia-Robledo, E.; Sveegaard, S.; Andersen, M.H.; Gothelf, K.V.; Larsen, L.H. Amperometic microsensor for measurement of gaseous and dissolved CO2. Sens. Actuators B Chem. 2019, 283, 349–354. [Google Scholar] [CrossRef]
- Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2004, 108, 20355–20365. [Google Scholar] [CrossRef]
- Jacquemin, J.; Costa Gomes, M.F.; Husson, P.; Majer, V. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric. J. Chem. Thermodyn. 2006, 38, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Doganata, S.; Coskun, S.; Oeztuerk, Y.; Celikoglu, M. Investigation of interaction of carbon dioxide with ionic liquid filled photonic crystal fiber. Optoelectron. Adv. Mater. Rapid Commun. 2016, 10, 354–357. [Google Scholar]
- Oter, O.; Ertekin, K.; Derinkuyu, S. Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta 2008, 76, 557–563. [Google Scholar] [CrossRef]
- Oter, O.; Ertekin, K.; Topkaya, D.; Alp, S. Emission-based optical carbon dioxide sensing with HPTS in green chemistry reagents: Room-temperature ionic liquids. Anal. Bioanal. Chem. 2006, 386, 1225–1234. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Aguayo-López, M.L.; Pérez de Vargas-Sansalvador, I.; Capitán-Vallvey, L.F. Ionic liquids on optical sensors for gaseous carbon dioxide. Anal. Bioanal. Chem. 2018, 410, 5931–5939. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor. Sens. Actuators B Chem. 2013, 186, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ramos, M.D.; Aguayo-López, M.L.; de los Reyes-Berbel, E.; Santoyo-González, F.; Capitán-Vallvey, L.F. NIR optical carbon dioxide gas sensor based on simple azaBODIPY pH indicators. Analyst 2019, 144, 3870–3877. [Google Scholar] [CrossRef] [PubMed]
- Honeycutt, W.T.; Ley, M.T.; Materer, N.F. Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors. Sensors 2019, 19, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borisov, S.M.; Gatterer, K.; Bitschnau, B.; Klimant, I. Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures. J. Phys. Chem. C 2010, 114, 9118–9124. [Google Scholar] [CrossRef] [PubMed]
- Jokic, T.; Borisov, S.M.; Saf, R.; Nielsen, D.A.; Kühl, M.; Klimant, I. Highly Photostable Near-Infrared Fluorescent pH Indicators and Sensors Based on BF2-Chelated Tetraarylazadipyrromethene Dyes. Anal. Chem. 2012, 84, 6723–6730. [Google Scholar] [CrossRef]
- Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W.M.; O’Shea, D.F. In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy. J. Am. Chem. Soc. 2004, 126, 10619–10631. [Google Scholar] [CrossRef]
- Capitán-Vallvey, L.F.; Fernández Ramos, M.D.; Avidad, R.; Deheidel, M.K.A. Determination of the pesticide morestan by means of a single-use phosphorimetric sensor. Anal. Chim. Acta 2001, 440, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.; Lepre, A.; Wild, L. Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sens. Actuators B 1997, 39, 419–425. [Google Scholar] [CrossRef]
- Aguayo-López, M.L.; Capitán-Vallvey, L.F.; Fernández-Ramos, M.D. Optical sensor for carbon dioxide gas determination, characterization and improvements. Talanta 2014, 126, 196–201. [Google Scholar] [CrossRef]
- Mills, A.; Chang, Q.; McMurray, N. Equilibrium Studies on Colorimetric Plastic Film Sensors for Carbon Dioxide. Anal. Chem. 1992, 64, 1383–1389. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Moreno-Puche, F.; Escobedo, P.; García-López, P.A.; Capitán-Vallvey, L.F.; Martínez-Olmos, A. Optical portable instrument for the determination of CO2 in indoor environments. Talanta 2020, 208, 120387. [Google Scholar] [CrossRef] [PubMed]
- Marazuela, M.D.; Moreno Bondi, M.C.; Orellana, G. Enhanced performance of a fibre-optic luminescence CO2 sensor using carbonic anhydrase. Sens. Actuators B Chem. 1995, 29, 126–131. [Google Scholar] [CrossRef]
- Neurauter, G.; Klimant, I.; Wolfbeis, O.S. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal. Chim. Acta 1999, 382, 67–75. [Google Scholar] [CrossRef]
- Mills, A.; Chang, Q. Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 1993, 118, 839–843. [Google Scholar] [CrossRef]
- Borisov, S.M.; Waldhier, M.C.; Klimant, I.; Wolfbeis, O.S. Optical Carbon Dioxide Sensors Based on Silicone-Encapsulated Room-Temperature Ionic Liquids. Chem. Mater. 2007, 19, 6187–6194. [Google Scholar] [CrossRef]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C: Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- Nakamura, N.; Amao, Y. Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye. Anal. Bioanal. Chem. 2003, 376, 642–646. [Google Scholar] [CrossRef]
- ISO. Capability of detection. Methodology in the linear and non-linear cases. In ISO 11843-5:2008. Capability of Detection. Part 5: Methodology in the Linear and Non-Linear Calibration Cases; International Standardization Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Aydogdu, S.; Ertekin, K.; Suslu, A.; Ozdemir, M.; Celik, E.; Cocen, U. Optical CO2 Sensing with Ionic Liquid Doped Electrospun Nanofibers. J. Fluoresc. 2011, 21, 607–613. [Google Scholar] [CrossRef]
GAB (% w/w) | 0.12 | 0.25 | 0.35 | 0.5 |
---|---|---|---|---|
I100-I0 | 20.0 | 32.4 | 80.2 | 76.2 |
t90 (s) | 16 | 30 | 23 | 52 |
t10 (s) | 32 | 32 | 29 | 63 |
Analytical Parameter | azaBODIPY without IL | azaBODIPY with IL |
---|---|---|
I100-I0 | 140.7 | 87.6 |
Slope | 15.9 ± 0.8 | 0.0051 ± 0.01 |
Intercept | 0.6 ± 0.163 | 0.9 ± 0.10 |
R2 | 0.999 | 0.982 |
LOD (%CO2) | 0.57 | 0.26 |
LDQ (%CO2) | 1.7 | 1.64 |
Upper limit (%CO2) | 60 | 100 |
Detection interval (%CO2) | 0.57–1.7 | 0.26–1.64 |
Quantification Interval (%CO2) | 1.7–60 | 1.64–100 |
Precision (RSD; n = 15) at 0.6% CO2 | 1.23 | 0.70 |
Precision (RSD; n = 15) at 16.7% CO2 | 0.62 | 3.0 |
Response time (t90) (s) | 60 ± 2 | 23 ± 2 |
Recovery time (t10) (s) | 120.0 ± 0,6 | 49 ± 1 |
T1 (days) | 6 | 20 |
T2 (days) | 570 | 120 |
Storage | In dark container | In dark container |
Sensing Chemistry | Technique | LOD (% CO2) | t90–t10 (s) | Precision RSD (%) | Lifetime (Days)/Storage | Ref |
---|---|---|---|---|---|---|
HPTS/EC/IL | I | - | 54–180 | - | 95 | [28] |
HPTS/EC/TOABr/TOAOH/IL HPTS/PMMA/TOABr/TOAOH//IL | I | - | 15–120 20–300 | - | 210/ambient | [50] |
PtOEP/N/IL/HPMC/PVCD | I | 0.008 | 10–48.5 | 0.21 | 280/ambient | [30] |
PAVB/IL | I | 0.0286 | 127–177 | - | - | [23] |
HEC/MCP/IL | A | 0.36 | 530–540 | - | 14/ambient | [15] |
HPMC/N/IL | PD | 0.005 | 1.3–2.5 | 1.5 | 30/ambient | [30] |
azaBODIPY/GAB/IL/HPMC | I | 0.26 | 23–49 | 0.7 | 20/ambient | Current study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Ramos, M.D.; Mirza-Montoro, F.; Capitán-Vallvey, L.F.; Pérez de Vargas-Sansalvador, I.M. Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid. Coatings 2021, 11, 163. https://doi.org/10.3390/coatings11020163
Fernández-Ramos MD, Mirza-Montoro F, Capitán-Vallvey LF, Pérez de Vargas-Sansalvador IM. Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid. Coatings. 2021; 11(2):163. https://doi.org/10.3390/coatings11020163
Chicago/Turabian StyleFernández-Ramos, María Dolores, Fátima Mirza-Montoro, Luis Fermín Capitán-Vallvey, and Isabel María Pérez de Vargas-Sansalvador. 2021. "Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid" Coatings 11, no. 2: 163. https://doi.org/10.3390/coatings11020163
APA StyleFernández-Ramos, M. D., Mirza-Montoro, F., Capitán-Vallvey, L. F., & Pérez de Vargas-Sansalvador, I. M. (2021). Near Infrared Sensor to Determine Carbon Dioxide Gas Based on Ionic Liquid. Coatings, 11(2), 163. https://doi.org/10.3390/coatings11020163