Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thin Film Growth and Film Composition
3.2. Structure and Morphology
3.3. Optical Properties
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Aramwit, C.; Intarasiri, S.; Bootkul, D.; Tippawan, U.; Supsermpol, B.; Seanphinit, N.; Ruangkul, W.; Yu, L. Effects of Filtered Cathodic Vacuum Arc Deposition (FCVAD) Conditions on Photovoltaic TiO2 Films. Appl. Surf. Sci. 2014, 310, 266–271. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Pradhan, S.; Bhavanasi, V.; Sahoo, S.; Sarangi, S.; Anwar, S.; Barhai, P. Low Temperature Stabilized Rutile Phase TiO2 Films Grown by Sputtering. Thin Solid Films 2012, 520, 1809–1813. [Google Scholar] [CrossRef]
- Arias, L.M.F.; Kleiman, A.; Heredia, E.; Márquez, A. Rutile Titanium Dioxide Films Deposited With a Vacuum Arc at Different Temperatures. J. Phys. Conf. Ser. 2012, 370, 012027. [Google Scholar] [CrossRef]
- Jiménez-Solano, A.; Anaya, M.; Calvo, M.E.; Alcon-Camas, M.; Alcañiz, C.; Guillén, E.; Martínez, N.; Gallas, M.; Preussner, T.; Escobar-Galindo, R.; et al. Aperiodic Metal-Dielectric Multilayers As Highly Efficient Sunlight Reflectors. Adv. Opt. Mater. 2017, 5, 1600833. [Google Scholar] [CrossRef] [Green Version]
- Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of Amorphous and Crystalline Titanium Dioxide from First Principles. J. Mater. Sci. 2012, 47, 7515–7521. [Google Scholar] [CrossRef]
- Dhumal, S.Y.; Daulton, T.L.; Jiang, J.; Khomami, B.; Biswas, P. Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor. Appl. Catal. B Environ. 2009, 86, 145–151. [Google Scholar]
- Tay, B.; Zhao, Z.; Chua, D. Review of Metal Oxide Films Deposited by Filtered Cathodic Vacuum Arc Technique. Mater. Sci. Eng. R Rep. 2006, 52, 1–48. [Google Scholar] [CrossRef]
- Lim, J.C.; Song, K.J.; Park, C. The Effect of Deposition Parameters on the Phase of TiO2 Films Grown by RF Magnetron Sputtering. J. Korean Phys. Soc. 2014, 65, 1896–1902. [Google Scholar] [CrossRef]
- Berkeley, L. Energetic Deposition Using Filtered Cathodic Arc Plasmas. Vacuum 2002, 67, 673–686. [Google Scholar]
- Zhirkov, I.S.; Paternoster, C.; Delplancke-Ogletree, M.P. Titanium Oxide Thin Film Deposition by Pulsed Arc Vacuum Plasma. J. Phys. Conf. Ser. 2011, 275, 12019. [Google Scholar] [CrossRef]
- Löbl, P.; Huppertz, M.; Mergel, D. Nucleation and Growth in TiO2 Films Prepared by Sputtering and Evaporation. Thin Solid Films 1994, 251, 72–79. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA User’s Guide; Max-Plank-Institut für Plasmaphysuk: Garching, Germany, 1997. [Google Scholar]
- Nastasi, M.; Mayer, J.W.; Wang, Y. Ion Beam Analysis: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Arias, L.F.; Kleiman, A.; Vega, D.; Fazio, M.; Halac, E.; Márquez, A. Enhancement of Rutile Phase Formation in TiO2 Films Deposited on Stainless Steel Substrates With a Vacuum Arc. Thin Solid Films 2017, 638, 269–276. [Google Scholar] [CrossRef]
- Bendavid, A.; Martin, P.J.; Takikawa, H. Deposition and Modication of Titanium Dioxide Thin Films by Filtered Arc Deposition. Thin Solid Film. 2000, 360, 241–249. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Parker, T.; Kelly, R. Ion-Impact Chemistry in the System Titanium-Oxygen (studies on Bombardment-Enhanced conductivity—III). J. Phys. Chem. Solids 1975, 36, 377–385. [Google Scholar] [CrossRef]
- Mooradian, A.; Raccah, P.M. Raman Study of the Semiconductor-Metal Transition in Ti2O3. Phys. Rev. B 1971, 3, 4253–4256. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Fleury, P.A.; Damen, T.C. Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 1967, 154, 522–526. [Google Scholar] [CrossRef]
- Swamy, V.; Muddle, B.C.; Dai, Q. Size-Dependent Modifications of the Raman Spectrum of Rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118. [Google Scholar] [CrossRef]
- Parker, J.C.; Siegel, R.W. Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943–945. [Google Scholar] [CrossRef]
- Breckenridge, R.G.; Hosler, W.R. Electrical Properties of Titanium Dioxide Semiconductors. Phys. Rev. 1953, 91, 793–802. [Google Scholar] [CrossRef]
- Cronemeyer, D.C. Infrared Absorption of Reduced Rutile TiO2Single Crystals. Phys. Rev. 1959, 113, 1222–1226. [Google Scholar] [CrossRef]
- Ihara, T.; Miyoshi, M.; Ando, M.; Sugihara, S.; Iriyama, Y. Preparation of a Visible-Light-Active TiO2 Photocatalyst by RF Plasma Treatment. J. Mater. Sci. 2001, 36, 4201–4207. [Google Scholar] [CrossRef]
- Zhao, Z.; Tay, B.K.; Yu, G. Room-Temperature Deposition of Amorphous Titanium Dioxide Thin Film With High Refractive Index by a Filtered Cathodic Vacuum Arc Technique. Appl. Opt. 2004, 43, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X. Effect of O2 Pressure on the Preferred Orientation of TiO2 Films Prepared by Filtered Arc Deposition. Thin Solid Films 1998, 326, 171–174. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Li, C.; Wang, H.; Chen, L.; Liu, X. Rutile-Type Titanium Oxide Films Synthesized by Filtered Arc Deposition. Surf. Coat. Technol. 1998, 110, 136–139. [Google Scholar] [CrossRef]
- Bendavid, A.; Martin, P.; Jamting, Å.; Takikawa, H. Structural and Optical Properties of Titanium Oxide Thin Films Deposited by Filtered Arc Deposition. Thin Solid Films 1999, 355–356, 6–11. [Google Scholar] [CrossRef]
- Martin, P.; Bendavid, A.; Netterfield, R.; Kinder, T.; Jahan, F.; Smith, G. Plasma Deposition of Tribological and Optical Thin Film Materials With a Filtered Cathodic Arc Source. Surf. Coat. Technol. 1999, 112, 257–260. [Google Scholar] [CrossRef]
- Takikawa, H.; Matsui, T.; Sakakibara, T.; Bendavid, A.; Martin, P.J. Properties of Titanium Oxide Film Prepared by Reactive Cathodic Vacuum Arc Deposition. Thin Solid Films 1999, 348, 145–151. [Google Scholar] [CrossRef]
- Zhao, Z.; Tay, B.K.; Lau, S.P.; Yu, G. Optical Properties of Titania Films Prepared by off-Plane Filtered Cathodic Vacuum Arc. J. Cryst. Growth 2004, 268, 543–546. [Google Scholar] [CrossRef]
- Huang, A.; Chu, P.K.; Wang, L.; Cheung, W.; Xu, J.; Wong, S. Fabrication of Rutile TiO2 Thin Films by Low-Temperature, Bias-Assisted Cathodic Arc Deposition and Their Dielectric Properties. J. Mater. Res. 2006, 21, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Kleiman, A.; Márquez, A.; Lamas, D.G. Optimization of a DC Vacuum Arc to Obtain Anatase Phase TiO2 Coatings. Fourth Huntsville Gamma-Ray Burst Symp. 2006, 875, 223–226. [Google Scholar] [CrossRef]
- Kleiman, A.; Marquez, A.; Lamas, D. Anatase TiO2 Films Obtained by Cathodic Arc Deposition. Surf. Coat. Technol. 2007, 201, 6358–6362. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, G.; Dong, C.; Wen, L. Amorphous TiO2 Films With High Refractive Index Deposited by Pulsed Bias Arc Ion Plating. Surf. Coat. Technol. 2007, 201, 7252–7258. [Google Scholar] [CrossRef]
- Zhao, S. Spectrally Selective Solar Absorbing Coatings Prepared by Dc Magnetron Sputtering. Ph.D. Dissertation, 2007. Available online: http://uu.diva-portal.org/smash/get/diva2:169700/FULLTEXT01.pdf (accessed on 31 December 2020).
- Bendavid, A.; Martin, P.; Preston, E. The Effect of Pulsed Direct Current Substrate Bias on the Properties of Titanium Dioxide Thin Films Deposited by Filtered Cathodic Vacuum Arc Deposition. Thin Solid Films 2008, 517, 494–499. [Google Scholar] [CrossRef]
- Paternoster, C.; Zhirkov, I.; Delplancke-Ogletree, M.-P. Structural and Mechanical Characterization of Nanostructured Titanium Oxide Thin Films Deposited by Filtered Cathodic Vacuum Arc. Surf. Coat. Technol. 2013, 227, 42–47. [Google Scholar] [CrossRef]
- Gjevori, A.; Gerlach, J.; Manova, D.; Assmann, W.; Valcheva, E.; Mändl, S. Influence of Auxiliary Plasma Source and Ion Bombardment on Growth of TiO2 Thin Films. Surf. Coat. Technol. 2011, 205, S232–S234. [Google Scholar] [CrossRef]
- Šícha, J.; Musil, J.; Meissner, M.; Čerstvý, R. Nanostructure of Photocatalytic TiO2 Films Sputtered at Temperatures below 200 °C. Appl. Surf. Sci. 2008, 254, 3793–3800. [Google Scholar] [CrossRef]
pO2 (Pa) | Peak Position (2θ) | (h k l) | d (Å) | a (Å) | c (Å) |
---|---|---|---|---|---|
Reference (TiO) (ICC card 01-077-2170) | 37.18 43.20 62.74 75.24 | (111) (200) (220) (311) | 2.416 2.092 1.479 1.261 | 4.18 | 4.18 |
0.04 | 36.60 42.87 62.38 75.01 | (111) (200) (220) (311) | 2.45 2.10 1.48 1.26 | 4.25 4.21 4.21 4.19 | 4.25 4.21 4.21 4.19 |
0.05 | 37.71 43.72 - 76.54 | (111) (200) (220) (311) | 2.38 2.07 - 1.24 | 4.13 4.14 - 4.12 | 4.13 4.14 - 4.12 |
0.06 | 37.01 - 62.92 - | (111) (200) (220) (311) | 2.42 - 1.47 - | 4.20 - 4.17 - | |
Reference (Ti2O3) (ICC card 00-010-0063) | 34.85 40.26 53.75 61.34 62.58 86.98 | (110) (113) (116) (214) (300) (226) | 2.57 2.23 1.70 1.51 1.48 1.11 | 5.13 | 13.65 |
0.07 | 35.00 40.66 54.21 61.23 63.40 87.69 | (110) (113) (116) (214) (300) (226) | 2.53 2.21 1.69 1.51 1.46 1.11 | - | - |
pO2 (Pa) | Peak Position (2θ) | (h k l) | d (Å) | a (Å) | c (Å) | Crystallite Size (nm) Average |
---|---|---|---|---|---|---|
Reference Rutile TiO2 (ICC card 01-077-0444) | 27.29 53.98 56.30 | (110) (211) (220) | 3.265 1.697 1.632 | 4.61 | 2.97 | - |
0.10 | 27.39 54.06 56.07 | (110) (211) (220) | 3.252 1.694 1.639 | 4.60 | 2.99 | 6.60 ± 0.80 |
0.16 | 27.38 54.21 56.57 | (110) (211) (220) | 3.254 1.690 1.625 | 4.60 | 2.96 | 5.55 ± 0.99 |
0.20 | 27.33 54.04 56.33 | (110) (211) (220) | 3.254 1.690 1.625 | 4.61 | 2.98 | 6.00 ± 0.12 |
Ref. | Bias | T° | Pw (Pa) | Crystalline phase | n |
---|---|---|---|---|---|
Zhang and Liu, 1998 [28] | −400 V | 300 °C | 0.04, 0.2 | rutile | |
Zhang et al., 1998 [29] | 0 to 400 V | 300 °C | 0, 2 | rutile (bias); amorphous (0V) | |
Bendavid et al., 1999 [30] | 0 to −400V | RT | anatase (0 V); amorphous (−50 V); rutile (−100 to −400 V) | anatase: 2.62; rutile: 2.72 | |
Martin et al., 1999 [31] | amorphous | amorphous: 2.45 | |||
Takikawa et al., 1999 [32] | 0.1–2.0 | amorphous | |||
Bendavid et al., 2000 [17] | 0 to −400V | RT | 0.35 | anatase (0 V); amorphous (−50 V); rutile (−100 to −400 V) | amorphous: 2.56; anatase: 2.62; rutile: 2.72 |
Z. W. Zhao et al., 2004 [33] | - | - | - | amorphous | 2.57 at 550 nm |
Z. Zhao et al., 2004 [27] | - | RT | 0.03 | amorphous | 2.56 at 550 nm |
Huang et al., 2006 [34] | 0, −200, −500V | 450 °C | amorphous (0V); anatase, (−200 V); rutile (−500 V) | ||
Kleiman et al., 2006 [35] | 200–400 °C | amorphous (200 °C); anatase (400 °C) | |||
Kleiman et al., 2007 [36] | no | RT-400 °C | amorphous (<300 °C); anatase (>300 °C) | ||
Zhang et al., 2007 [37] | no | RT | amorphous | 2.51 at 550 nm | |
Zhao, 2007 [38] | amorphous | ||||
Zhang et al., 2007 [37] | 0 to −900V | amorphous | |||
Bendavid et al., 2008 [39] | −50 V to −300 V | RT | 0.3 | anatase and some rutilo | 2.59 at 550 nm |
Zhirkov et al., 2011 [12] | no | amorphous | - | ||
Zhirkov et al., 2011 [12] | 0, −1, −50, −70 V | 500 °C, 300 °C, 150 °C, 200 °C, 15 °C | 0.6, 0.01, 0.006 | 500 °C, 300 °C, no bias: rutile 150 °C (0, −10, −50, −70 V): only a broad (101) rutile peak RT: no bias: amorphous | - |
Arias et al., 2012 [5] | no | RT-570 °C | 2–5 | RT: amorphous (RT); anatase/rutile (in SS, 360 °C); anatase+rutile (400–500 °C); rutile (560 °C) | - |
Paternoster et al., 2013 [40] | 100 °C | PO2 = 0.06 | amorphous (RT); rutile (Tsub ≥ 300 °C) | - | |
Aramwit et al., 2014 [3] | 0 or −250 V | RT | 0.013, 0.13, 1.3, 13 | amorphous (0 V), some rutile (bias) | - |
Franco Arias et al., 2017 [16] | −120 | 300 °C or 400 °C | 5–8 | small rutile and anatase peaks (no Ti interlayer); rutile (with Ti interlayer) | - |
Current work | 0 | RT | 0.02–0.41 | TiO/Ti2O3/RutileTiO2 and amorphous TiO2 | rutile: 2.63 amorphous: 2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén, E.; Krause, M.; Heras, I.; Rincón-Llorente, G.; Escobar-Galindo, R. Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature. Coatings 2021, 11, 233. https://doi.org/10.3390/coatings11020233
Guillén E, Krause M, Heras I, Rincón-Llorente G, Escobar-Galindo R. Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature. Coatings. 2021; 11(2):233. https://doi.org/10.3390/coatings11020233
Chicago/Turabian StyleGuillén, Elena, Matthias Krause, Irene Heras, Gonzalo Rincón-Llorente, and Ramón Escobar-Galindo. 2021. "Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature" Coatings 11, no. 2: 233. https://doi.org/10.3390/coatings11020233
APA StyleGuillén, E., Krause, M., Heras, I., Rincón-Llorente, G., & Escobar-Galindo, R. (2021). Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature. Coatings, 11(2), 233. https://doi.org/10.3390/coatings11020233