Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sample
2.2. Characterisation Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavrilov, D.; Maeva, E.; Grube, O.; Vodyanoy, I.; Maev, R. Experimental Comparative Study of the Applicability of Infrared Techniques for Non-destructive Evaluation of Paintings. J. Am. Inst. Conserv. 2013, 52, 48–60. [Google Scholar] [CrossRef]
- Casini, A.; Lotti, F.; Picollo, M.; Stefani, L.; Buzzegoli, E. Image Spectroscopy Mapping Technique for Non-Invasive Analysis of Paintings. Stud. Conserv. 1999, 44, 39–48. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Vallat, C.; Goffinet, D. Quantitative Analysis of Individual Sugars during Starch Hydrolysis by FT-IR/ATR Spectrometry. Part I: Multivariate Calibration Study—Repeatibility and Reproducibility. Appl. Spectrosc. 1995, 49, 556–562. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Colomban, P.; Milande, V.; Le Bihan, L. On-site Raman analysis of Iznik pottery glazes and pigments. J. Raman Spectrosc. 2004, 35, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Catelli, E.; Sciutto, G.; Prati, S.; Valente Chavez Lozano, M.; Gatti, L.; Lugli, F.; Silvestrini, S.; Benazzi, S.; Genorini, E.; Mazzeo, R. A new miniaturised short-wave infrared (SWIR) spectrometer for on-site cultural heritage investigations. Talanta 2020, 218, 121112. [Google Scholar] [CrossRef] [PubMed]
- Perri, A.; Nogueira de Faria, B.E.; Teles Ferreira, D.C.; Comelli, D.; Valentini, G.; Polli, D.; Cerullo, G.N.; Manzoni, C. A hyperspectral camera for conservation science, based on a birefringent ultrastable common path interferometer. Opt. Arts Archit. Archaeol. 2019, VII, 110580B. [Google Scholar] [CrossRef]
- Daffara, C.; Marchioro, G.; Ambrosini, D. Smartphone diagnostics for cultural heritage. Opt. Arts Archit. Archaeol. 2019, VII, 110581K. [Google Scholar] [CrossRef]
- Van Hoey, O.; Salavrakos, A.; Marques, A.; Nagao, A.; Willems, R.; Vanhavere, F.; Cauwels, V.; Nascimento, L.F. Radiation dosimetry properties of smartphone CMOS sensors. Radiat. Prot. Dosim. 2016, 168, 314–321. [Google Scholar] [CrossRef]
- Wiesinger, R.; Pagnin, L.; Anghelone, M.; Moretto, L.M.; Orsega, E.F.; Schreiner, M. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 7401–7407. [Google Scholar] [CrossRef] [Green Version]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage—An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- France, F.G.; Christens-Barry, W.; Toth, M.B.; Boydston, K. Advanced image analysis for the preservation of cultural heritage. Comput. Vis. Image Anal. Art 2010, 7531, 75310E. [Google Scholar] [CrossRef]
- Alfeld, M.; de Viguerie, L. Recent developments in spectroscopic imaging techniques for historical paintings—A review. Spectrochim Acta B 2017, 136, 81–105. [Google Scholar] [CrossRef]
- Kubik, M. Hyperspectral Imaging: A New Technique for the Non-Invasive Study of Artworks. In Physical Techniques in the Study of Art, Archaeology and Cultural Heritage; Creagh, D., Bradley, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 199–259. [Google Scholar]
- Rosi, F.; Miliani, C.; Braun, R.; Harig, R.; Sali, D.; Brunetti, B.G.; Sgamellotti, A. Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew. Chem. Int. Ed. 2013, 52, 5258–5261. [Google Scholar] [CrossRef]
- Dooley, K.A.; Conover, D.M.; Glinsman, L.D.; Delaney, J.K. Complementary standoff chemical imaging to map and identify artist materials in an early Italian Renaissance panel painting. Angew. Chem. Int. Ed. 2014, 126, 13995–13999. [Google Scholar] [CrossRef]
- MacLennan, D.; Trentelman, K.; Szafran, Y.; Woollett, A.T.; Delaney, J.K.; Janssens, K.; Dik, J. Rembrandt’s An Old Man in Military Costume: Combining hyperspectral and MA-XRF imaging to understand how two paintings were painted on a single panel. J. Am. Inst. Conserv. 2019, 58, 54–68. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.O.Y.; Palmer, M.; Morales, K.M.; de la Rie, E.R.; Hoenigswald, A.N.N. Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: Mapping and identification of artist materials in situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, F.; Dooley, K.A.; Facini, M.; Delaney, J.K. Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Sci. Adv. 2019, 5, eaaw7794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roselli, I.; Testa, P. High resolution VIS and NIR reflectography by digital CCD telescope and imaging techniques: Application to the fresco “Vergine con bambino” in S. Peter in Vincoli, Rome. In Proceedings of the 8th International Conference on “Non Destructive Investigation and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage”, Lecce, Italy, 15–19 May 2005. [Google Scholar]
- Sandak, A.; Sandak, J. Infrared Reflectance Spectroscopy. In SAS Encyclopedia of Archaeological Sciences; López-Varela, S.L., Ed.; Wiley-Blackwell: Chichester, UK, 2018; pp. 934–938. [Google Scholar]
- Groves, R.M.; Caballero, J.; Quinzan, I.; Ribes-Gómez, E. Damage and deterioration monitoring of artwork by data fusion of 3D surface and hyperspectral measurements. Opt. Sens. Detect. 2014, III, 91411E. [Google Scholar] [CrossRef]
- Burger, J. Hyperspectral NIR Image Analysis Data Exploration, Correction, and Regression. Ph.D. Thesis, Swedish University of Agricultural Sciences, Umeå, Sweden, 2006. [Google Scholar]
- Kleynhans, T.; Schmidt Patterson, C.M.; Dooley, K.A.; Messinger, D.W.; Delaney, J.K. An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence. Heritage Sci. 2020, 8, 84. [Google Scholar] [CrossRef]
- Kawakami, R.; Matsushita, Y.; Wright, J.; Ben-Ezra, M.; Tai, Y.W.; Ikeuchi, K. High-resolution hyperspectral imaging via matrix factorization. CVPR 2011 2011, 2329–2336. [Google Scholar] [CrossRef]
- Peery, T.R.; Messinger, D. MSI vs. HSI in cultural heritage imaging. Imaging Spectrom. XXII Appl. Sens. Process. 2018, 107680G. [Google Scholar] [CrossRef]
- Raimondi, V.; Conti, C.; Lognoli, D.; Palombi, L. Latest advancements in fluorescence hyperspectral lidar imaging of the cultural heritage. Fundam. Laser-Assist. Micro- Nanotechnologies. 2013, 90650Y. [Google Scholar] [CrossRef]
- Capobianco, G.; Bracciale, M.P.; Sali, D.; Sbardella, F.; Belloni, P.; Bonifazi, G.; Serranti, S.; Santarelli, M.L.; Cestelli Guidi, M. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section. Microchem. J. 2017, 132, 69–76. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, N.; Wang, Z.; Ren, J.; Chai, B.; Sun, J. What’s Wrong with the Murals at the Mogao Grottoes: A Near-Infrared Hyperspectral Imaging Method. Sci. Rep. 2015, 5, 14371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogou, S.; Lee, L.; Shahtahmassebi, G.; Liang, H. A novel methodology for the automatic analysis of large collections of paintings. Opt. Arts Archit. Archaeol. 2019, VII, 110580Q. [Google Scholar] [CrossRef]
- Bai, D.; Messinger, D.W.; Howell, D. A pigment analysis tool for hyperspectral images of cultural heritage artifacts. Algorithms Technol. Multispectral Hyperspectral Ultraspectral Imag. 2017, XXIII, 101981A. [Google Scholar] [CrossRef]
- Simon, C.; Huxhagen, U.; Mansouri, A.; Heritage, A.; Boochs, F.; Marzani, F.S. Integration of high-resolution spatial and spectral data acquisition systems to provide complementary datasets for cultural heritage applications. Comput. Vis. Image Anal. Art 2010, 75310L. [Google Scholar] [CrossRef] [Green Version]
- Hayem-Ghez, A.; Ravaud, E.; Boust, C.; Bastian, G.; Menu, M.; Brodie-Linder, N. Characterizing pigments with hyperspectral imaging variable false-color composites. Appl. Phys. A Mater. Sci. Process. 2015, 121, 939–947. [Google Scholar] [CrossRef]
- Strivay, D.; Clar, M.; Rakkaa, S.; Hocquet, F. Development of a translation stage for in situ noninvasive analysis and high-resolution imaging. Appl. Phys. A 2016, 122, 1–5. [Google Scholar] [CrossRef]
- Cosentino, A. Multispectral imaging system using 12 interference filters for mapping pigments. Conservar Património 2015, 21, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L.J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D. Multispectral imaging in cultural heritage conservation. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 26th International CIPA Symposium, Ottawa, ON, Canada, 28 August–1 September 2017; Volume XLII-2/W5. [Google Scholar]
- Picollo, M.; Cucci, C.; Casini, A.; Stefani, L. Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios. Sensors 2020, 20, 2843. [Google Scholar] [CrossRef] [PubMed]
- Tonazzini, A.; Salerno, E.; Abdel-Salam, Z.A.; Harith, M.A.; Marras, L.; Botto, A.; Campanella, B.; Legnaioli, S.; Pagnotta, S.; Poggialini, F.; et al. Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review. J. Adv. Res. 2019, 17, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Domenech-Carbo, A.; Domenech-Carbo, M.T.; Costa, V. Application of Instrumental Methods in the Analysis of Historic, Artistic and Archaeological Objects Electrochemical Methods in Archaeometry, Conservation and Restoration; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bottaini, C.; Mirao, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N. Energy dispersive x-ray fluorescence spectroscopy/monte carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the fareleira 3 site (vidigueira, south portugal). Spectrochim. Acta Part B At. Spectrosc. 2015, 103, 9–13. [Google Scholar] [CrossRef]
- Smith, G.D.; Clark, R.J. Raman microscopy in archaeological science. J. Archaeol. Sci. 2004, 31, 1137–1160. [Google Scholar] [CrossRef]
- Serghini-Idrissi, M.; Bernard, M.; Harrif, F.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim. Acta 2005, 50, 4699–4709. [Google Scholar] [CrossRef]
- Ruan, F.Q.; Zhang, T.L.; Li, H. Laser-induced breakdown spectroscopy in archeological science: A review of its application and future perspectives. Appl. Spectrosc. Rev. 2019, 54, 573–601. [Google Scholar] [CrossRef]
- Figueiredo, E.; Araújo, M.F.; Silva, R.J.; Vilaça, R. Characterisation of a proto-historic bronze collection by micro-EDXRF. Nucl. Inst. Methods 2013, 296, 26–31. [Google Scholar] [CrossRef]
- Padalkar, M.V.; Pleshko, N. Wavelength-dependent Penetration Depth of Near Infrared Radiation into Cartilage. Analyst 2015, 140, 2093–2100. [Google Scholar] [CrossRef] [Green Version]
- Makarović, G.; Rogelj Škafar, B. Poslikane Panjske Končnice: Zbirka Slovenskega Etnografskega Muzeja (Painted Beehive Panels: The Collection of the Slovene Ethnographic Museum); Zbirka Slovenskego Etnografskega Muzeja: Ljubljana, Slovenia, 2000. [Google Scholar]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and mixtures identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Delaney, J.K.; Piccolo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. SaLIS 2002, 62, 115–122. [Google Scholar]
- Martel, E.; Lazcano, R.; López, J.; Madroñal, D.; Salvador, R.; López, S.; Juarez, E.; Guerra, R.; Sanz, C.; Sarmiento, R. Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons. Remote Sens. 2018, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Sciutto, G.; Oliveri, P.; Prati, S.; Quaranta, M.; Lanteri, S.; Mazzeo, R. Analysis of paint cross-sections: A combined multivariate approach for the interpretation of μATR-FTIR hyperspectral data arrays. Anal. Bioanal. Chem. 2013, 405, 625–633. [Google Scholar] [CrossRef]
- Pronti, L.; Pelagotti, A.; Uccheddu, F.; Massini Rosati, L.; Felici, A.C. Intrinsic limits of reflectance spectroscopy in identifying pigments in paint layers. Mater. Sci. Eng. 2018, 364, 012061. [Google Scholar] [CrossRef]
- Pillay, R.; Hardeberg, J.Y.; George, S. Hyperspectral Calibration of Art: Acquisition and Calibration Workflows. J. Am. Inst. Conserv. 2019, 58, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, A. FORS spectral database of historical pigments in different binders. e-Conserv. J. 2014, 2, 57–68. [Google Scholar] [CrossRef]
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef]
- Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Pelosi, C.; Serranti, S. Hyperspectral imaging as powerful technique for investigating the stability of painting samples. J. Imaging 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Vagnini, M.; Miliani, C.; Cartechini, L.; Rocchi, P.; Brunetti, B.G.; Sgamellotti, A. FTNIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal. Bioanal. Chem. 2009, 395, 2107–2118. [Google Scholar] [CrossRef]
- Sandak, A.; Rozanska, A.; Sandak, J.; Riggio, M. Near infrared spectroscopic studies on coatings of 19th century wooden parquets from manor houses in South-Eastern Poland. J. Cult. Herit. 2015, 16, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Delaney, J.K.; Thoury, M.; Zeibel, J.G.; Ricciardi, P.; Morales, K.M.; Dooley, K.A. Visible and infrared imaging spectroscopy of paintings and improved reflectography. Herit. Sci. 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Amato, S.R.; Burnstock, A.; Michelin, A. A Preliminary Study on the Differentiation of Linseed and Poppy Oil Using Principal Component Analysis Methods Applied to Fiber Optics Reflectance Spectroscopy and Diffuse Reflectance Imaging Spectroscopy. Sensors 2020, 20, 7125. [Google Scholar] [CrossRef] [PubMed]
- Brocchieri, J.; Viguerie, L.; Sabbarese, C.; Boyer, M. Combination of non-invasive imaging techniques to characterize pigments in Buddhist thangka paintings. X-Ray Spectrom 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Retko, K.; Kavčič, M.; Legan, L.; Penko, A.; Tavzes, Č.; Ropret, P. Beehive panel paintings: Material characterisation. In Proceedings of the Technart 2019, International Conference on Use of Analytical Techniques for Characterization of Artworks, Brugge, Belgium, 7–10 May 2019. [Google Scholar]
- Daveri, A.; Paziani, S.; Marmion, M.; Harju, H.; Vidman, A.; Azzarelli, M.; Vagnini, M. New perspectives in the non-invasive, in situ identification of painting materials: The advanced MWIR hyperspectral imaging. Trend Anal. Chem. 2018, 98, 143–148. [Google Scholar] [CrossRef]
- Nevin, A.; Comelli, D.; Osticioli, I.; Toniolo, L.; Valentini, G.; Cubeddu, R. Assessment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2139–2149. [Google Scholar] [CrossRef]
- Pelosi, C.; Capobianco, G.; Agresti, G.; Bonifazi, G.; Morresi, F.; Rossi, S.; Santamaria, U.; Serranti, S. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging. Spectroch. Acta A 2018, 198, 92–106. [Google Scholar] [CrossRef]
- Sandak, J. Hyperspectral images of the beehive panel from Slovenia. Zenodo 2020. [Google Scholar] [CrossRef]
Hyperspectral Camera | FX10 | FX17 | SWIR | MWIR |
---|---|---|---|---|
Spectral region | VNIR | NIR | SWIR | MWIR |
Spectral range (nm) | 400−1000 | 900−1700 | 1000−2500 | 1550−5950 |
Number of bands (pixels) | 224 | 224 | 288 | 154 |
Spatial resolution (pixels) | 1024 | 640 | 384 | 640 |
Field-of-view width (mm) | 165 | 190 | 195 | 256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandak, J.; Sandak, A.; Legan, L.; Retko, K.; Kavčič, M.; Kosel, J.; Poohphajai, F.; Diaz, R.H.; Ponnuchamy, V.; Sajinčič, N.; et al. Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems. Coatings 2021, 11, 244. https://doi.org/10.3390/coatings11020244
Sandak J, Sandak A, Legan L, Retko K, Kavčič M, Kosel J, Poohphajai F, Diaz RH, Ponnuchamy V, Sajinčič N, et al. Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems. Coatings. 2021; 11(2):244. https://doi.org/10.3390/coatings11020244
Chicago/Turabian StyleSandak, Jakub, Anna Sandak, Lea Legan, Klara Retko, Maša Kavčič, Janez Kosel, Faksawat Poohphajai, Rene Herrera Diaz, Veerapandian Ponnuchamy, Nežka Sajinčič, and et al. 2021. "Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems" Coatings 11, no. 2: 244. https://doi.org/10.3390/coatings11020244
APA StyleSandak, J., Sandak, A., Legan, L., Retko, K., Kavčič, M., Kosel, J., Poohphajai, F., Diaz, R. H., Ponnuchamy, V., Sajinčič, N., Gordobil, O., Tavzes, Č., & Ropret, P. (2021). Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems. Coatings, 11(2), 244. https://doi.org/10.3390/coatings11020244