Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma
Abstract
:1. Introduction
2. Experiments
2.1. ALE Process
2.2. Digital Etching Process
2.3. Etching Damage Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chowdhury, S.; Stum, Z.; Li, Z.D.; Ueno, K.; Chow, T.P. Comparison of 600V Si, SiC and GaN power devices. Mater. Sci. Forum 2014, 971–974. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Zheng, X.; Ma, X.; He, Y.; Liu, K.; Li, A.; Peng, Y.; Zhang, C.; Hao, Y. Effects of recess depths on performance of AlGaN/GaN power MIS-HEMTs on the Si substrates and threshold voltage model of different recess depths for the using HfO2 gate insulator. Solid. State. Electron. 2020, 163, 107649. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, Q.; Wei, K.; Liu, G.; Zhang, J.; Wang, X.; Zheng, Y.; Sun, B.; Zhao, C.; Liu, H.; et al. High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 17.4.1–17.4.4. [Google Scholar] [CrossRef]
- He, Y.; Gao, H.; Wang, C.; Zhao, Y.; Lu, X.; Zhang, C.; Zheng, X.; Guo, L.; Ma, X.; Hao, Y. Comparative Study Between Partially and Fully Recessed-Gate Enhancement-Mode AlGaN/GaN MIS HEMT on the Breakdown Mechanism. Phys. Status Solidi Appl. Mater. Sci. 2019, 216, 1–6. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.J.; Chang, W.; Jang, H.G.; Na, J.; Lee, H.; Jun, C.H.; Cha, H.Y.; Mun, J.K.; Ko, S.C.; et al. Low onset voltage of GaN on Si Schottky barrier diode using various recess depths. Electron. Lett. 2014, 50, 1164–1165. [Google Scholar] [CrossRef]
- Xu, R.; Chen, P.; Liu, M.; Zhou, J.; Yang, Y.; Li, Y.; Ge, C.; Peng, H. 2.5-kV AlGaN/GaN Schottky Barrier Diode on Silicon Substrate with Recessed-anode Structure. IEEE Electron Device Lett. 2021, 42, 208–211. [Google Scholar] [CrossRef]
- Hu, J.; Stoffels, S.; Lenci, S.; De Jaeger, B.; Ronchi, N.; Tallarico, A.N.; Wellekens, D.; You, S.; Bakeroot, B.; Groeseneken, G.; et al. Statistical Analysis of the Impact of Anode Recess on the Electrical Characteristics of AlGaN/GaN Schottky Diodes with Gated Edge Termination. IEEE Trans. Electron Devices 2016, 63, 3451–3458. [Google Scholar] [CrossRef]
- Chen, J.Y.; Pan, C.J.; Chi, G.C. Electrical and optical changes in the near surface of reactively ion etched n-GaN. Solid State Electron. 1999, 43, 649–652. [Google Scholar] [CrossRef]
- Shah, A.P.; Azizur Rahman, A.; Bhattacharya, A. Temperature-dependence of Cl 2/Ar ICP-RIE of polar, semipolar, and nonpolar GaN and AlN following BCl 3 /Ar breakthrough plasma. J. Vac. Sci. Technol. A 2020, 38, 013001. [Google Scholar] [CrossRef]
- Lee, C.; Lu, W.; Piner, E.; Adesida, I. DC and microwave performance of recessed-gate GaN MESFETs using ICP-RIE. Solid State Electron. 2002, 46, 743–746. [Google Scholar] [CrossRef]
- Harrison, S.E.; Voss, L.F.; Torres, A.M.; Frye, C.D.; Shao, Q.; Nikoli, R.J. Ultradeep electron cyclotron resonance plasma etching of GaN. J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 061303. [Google Scholar] [CrossRef]
- Buttari, D.; Heikman, S.; Keller, S.; Mishra, U.K. Digital Etching for Highly Reproducible Low Damage Gate Recessing on AlGaN/GaN HEMTs. In Proceedings of the IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, 8 August 2002. [Google Scholar] [CrossRef]
- Fukumizu, H.; Sekine, M.; Hori, M.; Kanomaru, K.; Kikuchi, T. Atomic layer etching of AlGaN using Cl2 and Ar gas chemistry and UV damage evaluation. J. Vac. Sci. Technol. A 2019, 37, 021002. [Google Scholar] [CrossRef]
- Ohba, T.; Yang, W.; Tan, S.; Kanarik, K.J.; Nojiri, K. Atomic layer etching of GaN and AlGaN using directional plasma-enhanced approach. Jpn. J. Appl. Phys. 2017, 56. [Google Scholar] [CrossRef] [Green Version]
- Burnham, S.D.; Boutros, K.; Hashimoto, P.; Butler, C.; Wong, D.W.S.; Hu, M.; Micovic, M. Gate-recessed normally-off GaN-on-Si HEMT using a new O2- BCl3 digital etching technique. Phys. Status Solidi Curr. Top. Solid State Phys. 2010, 7, 2010–2012. [Google Scholar] [CrossRef]
- Hu, Q.; Li, S.; Li, T.; Wang, X.; Li, X.; Wu, Y. Channel engineering of normally-OFF AlGaN/GaN MOS-HEMTs by atomic layer etching and high-κDielectric. IEEE Electron Device Lett. 2018, 39, 1377–1380. [Google Scholar] [CrossRef]
- Kim, H.K.; Lin, H.; Ra, Y. Etching mechanism of a GaN/InGaN/GaN heterostructure in Cl2- and CH4-based inductively coupled plasmas. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 598. [Google Scholar] [CrossRef]
- Selvanathan, D.; Mohammed, F.M.; Bae, J.-O.; Adesida, I.; Bogart, K.H.A. Investigation of surface treatment schemes on n-type GaN and Al0.20Ga0.80N. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2005, 23, 2538. [Google Scholar] [CrossRef]
- Sohal, R.; Dudek, P.; Hilt, O. Comparative study of NH4OH and HCl etching behaviours on AlGaN surfaces. Appl. Surf. Sci. 2010, 256, 2210–2214. [Google Scholar] [CrossRef]
- Maffeis, T.G.G.; Simmonds, M.C.; Clark, S.A.; Peiro, F.; Haines, P.; Parbrook, P.J. Influence of premetallization surface treatment on the formation of Schottky Au-nGaN contacts. J. Appl. Phys. 2002, 92, 3179–3186. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Marzouki, F.; Al-ameer, S.; Turkestani, S. Electric Properties of n-GaN: Effect of Different Contacts on the Electronic Conduction. Int. J. Phys. 2013, 1, 41–48. [Google Scholar] [CrossRef]
- Diale, M.; Auret, F.D. Effects of chemical treatment on barrier height and ideality factors of Au/GaN Schottky diodes. Phys. B Condens. Matter 2009, 404, 4415–4418. [Google Scholar] [CrossRef] [Green Version]
- Kane, S.N.; Mishra, A.; Dutta, A.K. Preface: International Conference on Recent Trends in Physics (ICRTP 2016). J. Phys. Conf. Ser. 2016, 755. [Google Scholar] [CrossRef]
- Qiu, R.; Lu, H.; Chen, D.; Zhang, R.; Zheng, Y. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis. Appl. Surf. Sci. 2011, 257, 2700–2706. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Qin, Z.X.; Tong, Y.Z.; Ding, X.M.; Hu, X.D.; Yu, T.J.; Yang, Z.J.; Zhang, G.Y. Etching damage and its recovery in n-GaN by reactive ion etching. Phys. B Condens. Matter 2003, 334, 188–192. [Google Scholar] [CrossRef]
- Nakano, Y.; Kawakami, R.; Niibe, M. Generation of electrical damage in n-GaN films following treatment in a CF4 plasma. Appl. Phys. Express 2017, 10, 2–5. [Google Scholar] [CrossRef]
- Niibe, M.; Maeda, Y.; Kawakami, R.; Inaoka, T.; Tominaga, K.; Mukai, T. Surface analysis of n-GaN crystal damaged by RF-plasma-etching with Ar, Kr, and Xe gases. Phys. Status Solidi Curr. Top. Solid State Phys. 2011, 8, 435–437. [Google Scholar] [CrossRef]
- Kawakami, R.; Inaoka, T.; Minamoto, S.; Kikuhara, Y. Analysis of GaN etching damage by capacitively coupled RF Ar plasma exposure. Thin Solid Film. 2008, 516, 3478–3481. [Google Scholar] [CrossRef]
- Liu, Z.; Asano, A.; Imamura, M.; Ishikawa, K.; Takeda, K.; Kondo, H.; Oda, O.; Sekine, M.; Hori, M. Thermally enhanced formation of photon-induced damage on GaN films in Cl2 plasma. Jpn. J. Appl. Phys. 2017, 56. [Google Scholar] [CrossRef]
- Aroulanda, S.; Patard, O.; Altuntas, P.; Michel, N.; Pereira, J.; Lacam, C.; Gamarra, P.; Delage, S.L.; Defrance, N.; De Jaeger, J.-C.; et al. Cl2/Ar based atomic layer etching of AlGaN layers. J. Vac. Sci. Technol. A 2019, 37, 041001. [Google Scholar] [CrossRef]
- Kauppinen, C.; Khan, S.A.; Sundqvist, J.; Suyatin, D.B.; Suihkonen, S.; Kauppinen, E.I.; Sopanen, M. Atomic layer etching of gallium nitride (0001). J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 060603. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.A.; Syed, A.A.; Piao, H. Investigation of the electronic properties of nitrogen vacancies in AlGaN. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
Parameter | O2 Plasma Step | BCl3 Plasma Step |
---|---|---|
ICP power (W) | 400 | 400 |
Bias power (W) | 3 | 2 |
DC self-bias (V) | 4 | 3.8 |
Chamber pressure (mTorr) | 50 | 10 |
Gas flow rate (sccm) | 50 | 10 |
Plasma time (s) | 60 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.-H.; Cha, H.-Y.; Seo, K.-S. Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma. Coatings 2021, 11, 268. https://doi.org/10.3390/coatings11030268
Hwang I-H, Cha H-Y, Seo K-S. Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma. Coatings. 2021; 11(3):268. https://doi.org/10.3390/coatings11030268
Chicago/Turabian StyleHwang, Il-Hwan, Ho-Young Cha, and Kwang-Seok Seo. 2021. "Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma" Coatings 11, no. 3: 268. https://doi.org/10.3390/coatings11030268
APA StyleHwang, I. -H., Cha, H. -Y., & Seo, K. -S. (2021). Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma. Coatings, 11(3), 268. https://doi.org/10.3390/coatings11030268