Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites
Abstract
:1. Introduction
2. Composition and Mechanical Properties of Natural Fibers
3. Different Treatments for Natural Fibers
3.1. Physical Treatments
3.2. Chemical Treatments
3.2.1. Alkali Treatment
3.2.2. Silane Treatment
- Hydrolysis,
- Self-condensation,
- Adsorption,
- Chemical grafting.
3.2.3. Acetylation Treatment
3.2.4. Benzoylation Treatment
3.2.5. Maleated Coupling Agents
3.3. Effect of Treatments on Mechanical Properties of Composites
4. Synthesis of Natural Fiber Reinforced Polymer Composites
- Moisture;
- Constituents like cellulose and lignin in natural fiber;
- Final composite structure.
5. Potential Scope/Application of Natural of Fibers Reinforced Composites
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Badie, M.A.; Mahdi, E.; Hamouda, A.M.S. An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Mater. Des. 2011, 32, 1485–1500. [Google Scholar] [CrossRef]
- Khalid, M.; Al Rashid, A.; Sheikh, M. Correction to: Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach. Exp. Tech. 2021, 1. [Google Scholar] [CrossRef]
- Biagiotti, J.; Puglia, D.; Kenny, J.M. A Review on Natural Fibre-Based Composites—Part II. J. Nat. Fibers 2004, 1, 37–68. [Google Scholar] [CrossRef]
- Al Rashid, A.; Imran, R.; Khalid, M.Y. Determination of opening stresses for railway steel under low cycle fatigue using digital image correlation. Theor. Appl. Fract. Mech. 2020, 108, 102601. [Google Scholar] [CrossRef]
- Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Ali, A.; Khalina, A.; Jonoobi, M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater. Des. 2010, 31, 4927–4932. [Google Scholar] [CrossRef]
- Singha, S.; Rana, R.K. Functionalization of cellulosic fibers by graft copolymerization of acrylonitrile and ethyl acrylate from their binary mixtures. Carbohydr. Polym. 2012, 87, 500–511. [Google Scholar] [CrossRef]
- Zie, F.W.W.; Debnath, S.; Anwar, M.; Abdullah, A.H. Enhancing mechanical performance of bagasse fiber-epoxy composite by surface treatment. Solid State Phenom. 2020, 305, 8–17. [Google Scholar] [CrossRef]
- Zahid, S.; Nasir, M.A.; Nauman, S.; Karahan, M.; Nawab, Y.; Ali, H.M.; Khalid, Y.; Nabeel, M.; Ullah, M. Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes. J. Mech. Sci. Technol. 2019, 33, 197–204. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B. In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Yousif, F.; Shalwan, A.; Chin, C.W.; Ming, K.C. Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Des. 2012, 40, 378–385. [Google Scholar] [CrossRef]
- Gon, K.; Das, P.; Maity, S. Jute Composites as Wood Substitute. Int. J. Text. Sci. 2013, 1, 84–93. [Google Scholar] [CrossRef]
- Parre, B.; Karthikeyan, A.B.; Udhayasankar, R. Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater. Today Proc. 2020, 22, 347–352. [Google Scholar] [CrossRef]
- Valadez-Gonzalez, A.; Cervantes-Uc, J.; Olayo, R.; Herrera-Franco, P. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part. B Eng. 1999, 30, 309–320. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A.A. comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Mohanty, A.; Wibowo, M.; Misra, M.; Drzal, L. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos. Part. A Appl. Sci. Manuf. 2004, 35, 363–370. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural fiber reinforced polylactic acid composites: A review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011, 32, 4017–4021. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Assarar, M.; Scida, D.; el Mahi, A.; Poilâne, C.; Ayad, R. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres. Mater. Des. 2011, 32, 788–795. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Jena, P.K.; Mohanty, J.R.; Nayak, S. Effect of Surface Modification of Vetiver Fibers on Their Physical and Thermal Properties. J. Nat. Fibers 2020, 1–12. [Google Scholar] [CrossRef]
- Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater. Des. 2012, 35, 318–322. [Google Scholar] [CrossRef]
- Arrakhiz, F.; El Achaby, M.; Malha, M.; Bensalah, M.; Fassi-Fehri, O.; Bouhfid, R.; Benmoussa, K.; Qaiss, A. Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mater. Des. 2013, 43, 200–205. [Google Scholar] [CrossRef]
- Arib, R.M.N.; Sapuan, S.M.; Ahmad, M.M.H.M.; Paridah, M.T.; Zaman, H.M.D.K. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 2006, 27, 391–396. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Nasir, M.A.; Ali, A.; Al Rashid, A.; Khan, M.R. Experimental and numerical characterization of tensile property of jute/carbon fabric reinforced epoxy hybrid composites. SN Appl. Sci. 2019, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jeyapragash, R.; Srinivasan, V.; Sathiyamurthy, S. Mechanical properties of natural fiber/particulate reinforced epoxy composites—A review of the literature. Mater. Today Proc. 2020, 22, 1223–1227. [Google Scholar] [CrossRef]
- Sobczak, L.; Lang, R.W.; Haider, A. Polypropylene composites with natural fibers and wood—General mechanical property profiles. Compos. Sci. Technol. 2012, 72, 550–557. [Google Scholar] [CrossRef]
- Prasad, V.; Joy, A.; Venkatachalam, G.; Narayanan, S.; Rajakumar, S. Finite Element Analysis of Jute and Banana Fibre Reinforced Hybrid Polymer Matrix Composite and Optimization of Design Parameters Using ANOVA Technique. Proc. Eng. 2014, 97, 1116–1125. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, L.; Wang, X. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers Polym. 2006, 7, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.A.A.; Salleh, Z.; Hyie, K.M.; Berhan, M.N.; Taib, Y.M.D.; Bakri, M.A.I. Mechanical properties of kenaf/fiberglass polyester hybrid composite. Proc. Eng. 2012, 41, 1654–1659. [Google Scholar] [CrossRef] [Green Version]
- Parikh, D.; Calamari, T.; Sawhney, A.; Blanchard, E.; Screen, F.; Myatt, J.; Stryjewski, D.; Muller, D. Thermoformable Automotive Composites Containing Kenaf and Other Cellulosic Fibers. Text. Res. J. 2002, 72, 668–672. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Dawit, J.B.; Regassa, Y.; Lemu, H.G. Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results Mater. 2020, 5, 100054. [Google Scholar] [CrossRef]
- Khan, Z.; Yousif, B.F.; Islam, M. Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos. Part. B Eng. 2017, 116, 186–199. [Google Scholar] [CrossRef]
- Rahman, N.; Shing, L.W.; Simon, L.; Philipp, M.; Alireza, J.; Hebel, D.E.; Ling, C.S.; Wuan, L.H.; Valavan, S.; Nee, S.S. Enhanced bamboo composite with protective coating for structural concrete application. Energy Proc. 2017, 143, 167–172. [Google Scholar] [CrossRef]
- Tavares, T.D.; Antunes, J.C.; Ferreira, F.; Felgueiras, H.P. Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules 2020, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.; Reddy, Y.V.M.; Reddy, B.C.M.; Reddy, R.M. Mechanical, morphological, and thermogravimetric analysis of alkali-treated Cordia-Dichotoma natural fiber composites. J. Nat. Fibers 2020, 17, 759–768. [Google Scholar] [CrossRef]
- Kumar, S.S. Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications. Data Br. 2020, 28, 105054. [Google Scholar] [CrossRef] [PubMed]
- Alsaeed, T.; Yousif, B.F.; Ku, H. The potential of using date palm fibres as reinforcement for polymeric composites. Mater. Des. 2013, 43, 177–184. [Google Scholar] [CrossRef]
- Sumesh, K.R.; Kanthavel, K.; Kavimani, V. Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. Int. J. Biol. Macromol. 2020, 150, 775–785. [Google Scholar] [CrossRef]
- Ljungberg, L.Y. Materials selection and design for development of sustainable products. Mater. Des. 2007, 28, 466–479. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2019, 54, 5992–6026. [Google Scholar] [CrossRef]
- Rokbi, M.; Osmani, H.; Imad, A.; Benseddiq, N. Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Proc. Eng. 2011, 10, 2092–2097. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 2009, 100, 3563–3569. [Google Scholar] [CrossRef]
- Shrivastava, R.; Christy, A.; Telang, A.; Rana, R.S. Effect of Chemical Treatment and Curing Parameters on Mechanical Properties of Natural Fiber Reinforced Polymer Matrix Composites-A Review. J. Eng. Res. Appl. 2015, 5, 70–75. [Google Scholar]
- Parikh, V.; Chen, Y.; Sun, L. Reducing Automotive Interior Noise with Natural Fiber Nonwoven Floor Covering Systems. Text. Res. J. 2006, 76, 813–820. [Google Scholar] [CrossRef]
- Saxena, M.; Pappu, A.; Haque, R.; Sharma, A. Cellulose Fibers: Bio- and Nano-Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- He, J.; He, L.; Yang, B. Analysis on the impact response of fiber-reinforced composite laminates: An emphasis on the FEM simulation. Sci. Eng. Compos. Mater. 2019, 26, 1–11. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Ali, A.; Nasir, M.A.; Khalid, M.Y.; Nauman, S.; Shaker, K.; Khushnood, S.; Altaf, K.; Zeeshan, M.; Hussain, A. Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. J. Mech. Sci. Technol. 2019, 33, 4217–4226. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020, 26, 2079–2082. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Bhat, I.U.H.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y.S. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Akram, N.; Arshad, H.; Márquez, F.P.G. Characterization of Failure Strain In Fiber Reinforced Composites: Under On-Axis and Off-Axis Loading. Crystals 2021, 11, 216. [Google Scholar] [CrossRef]
- Elkhaoulani, A.; Arrakhiz, F.; Benmoussa, K.; Bouhfid, R.; Qaiss, A. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater. Des. 2013, 49, 203–208. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Mater. Des. 2015, 67, 173–179. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Abdan, K.; Zainudin, E.S. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater. Des. 2012, 40, 299–303. [Google Scholar] [CrossRef]
- Akil, H.M.; Omar, M.F.; Mazuki, A.A.M.; Safiee, S.; Ishak, Z.A.M.; Bakar, A.A. Kenaf fiber reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Al Rashid, A.; Khalid, M.Y.; Imran, R.; Ali, U.; Koc, M. Utilization of Banana Fiber-Reinforced Hybrid Composites in the Sports Industry. Materials 2020, 13, 3167. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; Perumal, A.E.; Arunsundaranayagam, D. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater. Des. 2013, 47, 151–159. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Leenie, A.; Harimi, M.; Beng, Y.K. Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 2006, 27, 689–693. [Google Scholar] [CrossRef]
- Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part. B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Bourmaud, A.; Beaugrand, J.; Shah, D.U.; Placet, V.; Baley, C. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 2018, 97, 347–408. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Hasani, H. A review on milkweed fiber properties as a high-potential raw material in textile applications. J. Ind. Text. 2017, 46, 1412–1436. [Google Scholar] [CrossRef]
- Kumar, R.; Haq, M.I.U.; Raina, A.; Anand, A. Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities. Int. J. Sustain. Eng. 2019, 12, 212–220. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; Elayaperumal, A. Banana fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2010, 29, 2387–2396. [Google Scholar] [CrossRef]
- Prasad, V.R.; Rao, K.M. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011, 32, 4658–4663. [Google Scholar] [CrossRef]
- Kalia, S.; Kaushik, V.K.; Sharma, R.K. Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. J. Nat. Fibers 2011, 8, 27–38. [Google Scholar] [CrossRef]
- Kumre, A.; Rana, R.; Purohit, R. A Review on mechanical property of sisal glass fiber reinforced polymer composites. Mater. Today Proc. 2017, 4, 3466–3476. [Google Scholar] [CrossRef]
- Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019. [Google Scholar] [CrossRef]
- Zaini, S.; Azaman, M.D.; Jamali, M.S.; Ismail, K.A. Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. J. Sandw. Struct. Mater. 2020, 22, 525–550. [Google Scholar] [CrossRef]
- Flynn, J.; Amiri, A.; Ulven, C. Hybridized carbon and flax fiber composites for tailored performance. Mater. Des. 2016, 102, 21–29. [Google Scholar] [CrossRef]
- Dahlke, B.; Larbig, H.; Scherzer, H.D.; Poltrock, R. Natural fiber reinforced foams based on renewable resources for automotive interior applications. J. Cell. Plast. 1998, 34, 361–378. [Google Scholar] [CrossRef]
- Gulati, D.; Sain, M. Fungal-modification of natural fibers: A novel method of treating natural fibers for composite reinforcement. J. Polym. Environ. 2006, 14, 347–352. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Basak, M.K.; Chanda, S.; Bhaduri, S.K.; Mondal, S.B.; Nandi, R. Recycling of jute waste for edible mushroom production. Ind. Crop. Prod. 1996, 5, 173–176. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Ferreira, A.S.; Nascimento, D.C.O. Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM 2009, 61, 17–22. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Sonawane, G.H.; Patil, S.P.; Sonawane, S.H. Nanocomposites and Its Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Meneghetti, P.; Qutubuddin, S. Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim. Acta 2006, 442, 74–77. [Google Scholar] [CrossRef]
- Vilaseca, F.; Corrales, F.; Llop, M.F.; Pèlach, M.À.; Mutjé, P. Chemical treatment for improving wettability of biofibres into thermoplastic matrices. Compos. Interfaces 2005, 12, 725–738. [Google Scholar] [CrossRef]
- Pothan, L.A.; Thomas, S.; Groeninckx, G. The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos. Part. A Appl. Sci. Manuf. 2006, 37, 1260–1269. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications; Springer: New York, NY, USA, 2020; Volume 55, p. 3. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Rahman, S.; Mathur, V.; Asmatulu, R. Effect of nanoclay and graphene inclusions on the low-velocity impact resistance of Kevlar-epoxy laminated composites. Compos. Struct. 2018, 187, 481–488. [Google Scholar] [CrossRef]
- Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. Natural Fibre Modification and Its Influence on Fibre-matrix Interfacial Properties in Biocomposite Materials. Fibers Polym. 2020, 21, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Rippon, J.A.; Evans, D.J. Improving the Properties of Natural Fibres by Chemical Treatments; Elsevier Ltd.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Khalid, M.Y.; Rashid, A.A.; Sheikh, M.F. Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach. Exp. Tech. 2021. [Google Scholar] [CrossRef]
- Corrales, F.; Vilaseca, F.; Llop, M.; Gironès, J.; Méndez, J.; Mutjè, P. Chemical modification of jute fibers for the production of green-composites. J. Hazard. Mater. 2007, 144, 730–735. [Google Scholar] [CrossRef]
- Gallego, R.; Piras, C.C.; Rutgeerts, L.A.J.; Fernandez-Prieto, S.; De Borggraeve, W.M.; Franco, J.M.; Smets, J. Green approach for the activation and functionalization of jute fibers through ball milling. Cellulose 2020, 27, 643–656. [Google Scholar] [CrossRef]
- Haneefa, A.; Bindu, P.; Aravind, I.; Thomas, S. Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J. Compos. Mater. 2008, 42, 1471–1489. [Google Scholar] [CrossRef]
- Arbelaiz, A.; Txueka, U.; Mezo, I.; Orue, A. Biocomposites Based on Poly(Lactic Acid) Matrix and Reinforced with Lignocellulosic Fibers: The Effect of Fiber Type and Matrix Modification. J. Nat. Fibers 2020, 1–14. [Google Scholar] [CrossRef]
- Arju, S.N.; Afsar, A.M.; Das, D.K.; Khan, M.A. Role of reactive dye and chemicals on mechanical properties of jute fabrics polypropylene composites. Proc. Eng. 2014, 90, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Van Voorn, B.; Smit, H.; Sinke, R.; De Klerk, B. Natural fibre reinforced sheet moulding compound. Compos. Part. A Appl. Sci. Manuf. 2001, 32, 1271–1279. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Tzounis, L.; Pongwisuthiruchte, A.; Potiyaraj, P. Effect of various surface treatments on the performance of jute fibers filled natural rubber (NR) composites. Polymers 2020, 12, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Cheng, G.; Jiang, B. Effect of silane treatment on microstructure of sisal fibers. Appl. Surf. Sci. 2014, 292, 806–812. [Google Scholar] [CrossRef]
- De Klerk, M.D.; Kayondo, M.; Moelich, G.M.; de Villiers, W.I.; Combrinck, R.; Boshoff, W.P. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 2020, 241, 117835. [Google Scholar] [CrossRef]
- Khan, M.A.; Terano, M.; Gafur, M.A.; Alam, M.S. Studies on the mechanical properties of woven jute fabric reinforced poly(L-lactic acid) composites. J. King Saud Univ. Eng. Sci. 2016, 28, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Panigrahi, S.; Tabil, L.; Crerar, W. Pre-treatment of flax fibers for use in rotationally molded biocomposites. J. Reinf. Plast. Compos. 2007, 26, 447–463. [Google Scholar] [CrossRef]
- Paul, A.; Joseph, K.; Thomas, S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos. Sci. Technol. 1997, 57, 67–79. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part. B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Ali, K.I.; Khan, M.A.; Ali, M.A. Study on Jute Material with Urethane Acrylate by UV Curing. Radiat. Phys. Chem. 1997, 49, 383–388. [Google Scholar]
- Khattab, T.A.; Mohamed, A.L.; Hassabo, A.G. Development of durable superhydrophobic cotton fabrics coated with silicone/stearic acid using different cross-linkers. Mater. Chem. Phys. 2020, 249, 122981. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Cooke, P.H.; Harden, J.; Liu, Z.; Erhan, S.Z.; Akin, D.E.; Barton, F.E. Farrell Interfacial Modification of Hemp Fiber Reinforced Composites Using Fungal and Alkali Treatment. J. Biobased Mater. Bioenergy 2007, 1, 109–117. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Zhang, J.; Li, W.; Lu, Z.; Zhang, Z.; Zhu, P.; Dong, Z. Preparation of a novel flame retardant containing triazine groups and its application on cotton fabrics. New J. Chem. 2020. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Khondker, A.; Ishiaku, U.S.; Nakai, A.; Hamada, H. Tensile, flexural and impact properties of jute fibre-based thermosetting composites. Plast. Rubber Compos. 2005, 34, 450–462. [Google Scholar] [CrossRef]
- Senthilraja, R.; Sarala, R.; Antony, A.G. Effect of acetylation technique on mechanical behavior and durability of palm fibre vinyl-ester composites. Mater. Today Proc. 2020, 21, 634–637. [Google Scholar] [CrossRef]
- Gironès, J.; Pimenta, M.T.B.; Vilaseca, F.; de Carvalho, A.J.F.; Mutjé, P.; Curvelo, A.A.S. Blocked isocyanates as coupling agents for cellulose-based composites. Carbohydr. Polym. 2007, 68, 537–543. [Google Scholar] [CrossRef]
- Bachtiar, D.; Sapuan, S.; Hamdan, M. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater. Des. 2008, 29, 1285–1290. [Google Scholar] [CrossRef]
- Vijay, R.; Manoharan, S.; Arjun, S.; Vinod, A.; Singaravelu, D.L. Characterization of Silane-Treated and Untreated Natural Fibers from Stem of Leucas Aspera. J. Nat. Fibers 2020, 1–17. [Google Scholar] [CrossRef]
- Bledzki, A.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Kaushik, V.K.; Kumar, A.; Kalia, S. Effect of Mercerization and Benzoyl Peroxide Treatment on Morphology, Thermal Stability and Crystallinity of Sisal Fibers. Int. J. Text. Sci. 2013, 1, 101–105. [Google Scholar] [CrossRef]
- Keener, T.J.; Stuart, R.K.; Brown, T.K. Maleated coupling agents for natural fibre composites. Compos. Part. A Appl. Sci. Manuf. 2004, 35, 357–362. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Jawaid, M.; Siengchin, S.; Khan, A.; Pruncu, C.I. A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polym. Test. 2020, 85, 106437. [Google Scholar] [CrossRef]
- Knežević, M.; Kramar, A.; Hajnrih, T.; Korica, M.; Nikolić, T.; Žekić, A.; Kostić, M. Influence of Potassium Permanganate Oxidation on Structure and Properties of Cotton. J. Nat. Fibers 2020, 1–13. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E.; Georgousis, G. Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos. Commun. 2018, 10, 6–10. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E.; Baillie, C.A.; Hodgkinson, J.M. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos. Part. A Appl. Sci. Manuf. 2002, 33, 1185–1190. [Google Scholar] [CrossRef]
- Joseph, K.; Varghese, S.; Kalaprasad, G.; Thomas, S.; Prasannakumari, L.; Koshy, P.; Pavithran, C. Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur. Polym. J. 1996, 32, 1243–1250. [Google Scholar] [CrossRef]
- Ray, K.; Patra, H.; Swain, A.K.; Parida, B.; Mahapatra, S.; Sahu, A.; Rana, S. Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: Fabrication and analysis of mechanical and water absorption properties. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Kalaiselvam, S. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings. Energy 2013, 59, 194–214. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Wang, L.; Ling, Z. On-axis and off -axis compressive behavior of pultruded GFRP composites at elevated temperatures. Compos. Struct. 2020, 236, 111891. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Viscusi, G.; Barra, G.; Verdolotti, L.; Galzerano, B.; Viscardi, M.; Gorrasi, G. Natural fiber reinforced inorganic foam composites from short hemp bast fibers obtained by mechanical decortation of unretted stems from the wastes of hemp cultivations. Mater. Today Proc. 2020, 34, 176–179. [Google Scholar] [CrossRef]
- Westman, M.P.; Fifield, L.S.; Simmons, K.L.; Laddha, S.; Kafentzis, T.A. Natural Fiber Composites: A Review; Pacific Northwest National Laboratory: Richland, WA, USA, 2010.
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Suntijitto, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 2015, 94, 664–669. [Google Scholar] [CrossRef]
- Leao, A.L.; Rowell, R.; Tavares, N. Applications of natural fibers in automotive industry in Brazil—Thermoforming process. In Science and Technology of Polymers and Advanced Materials; Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H., Eds.; Springer: Boston, MA, USA, 1998; pp. 755–761. [Google Scholar] [CrossRef]
- Jothibasu, S.; Mohanamurugan, S.; Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, R.M. Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. J. Ind. Text. 2018. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Proc. Eng. 2013, 51, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, K.G.; Sukumaran, K.; Mukherjee, R.S.; Pavithran, C.; Piuai, S.G.K. Natural Fibre-Polymer Composites. Cement Concrete Compos. 1990, 12, 117–136. [Google Scholar] [CrossRef]
- Tholibon, D.; Tharazi, I.; Sulong, A.B.; Muhamad, N.; Ismial, N.F.; Radzi, M.K.F.M.; Radzuan, N.M.; Hui, D. Kenaf Fiber Composites: A Review on Synthetic and Biodegradable Polymer Matrix. J. Kejuruter. 2019, 31, 65–76. [Google Scholar]
- Sanjeevi, S.; Ayyanar, A.; Kalimuthu, R.; Susaiyappan, S. Effects of chemical modification on the mechanical properties of Calotropis Gigantea fiber-reinforced phenol formaldehyde biocomposites. Medziagotyra 2019, 26, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, J.; Siregar, J.P.; Salleh, S.M.; Hamdan, M.H.M.; Cionita, T.; Rihayat, T. Important Considerations in Manufacturing of Natural Fiber Composites: A Review. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 647–664. [Google Scholar] [CrossRef]
Properties | Natural Fibers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cotton | Jute | Hemp | Coir | Date Palm | Flax | Ramie | Sisal | Pineapple | |
Elongation (%) | 3–10 | 1.5–1.8 | 1.6 | 15–30 | 2–19 | 1.2–3.0 | 2.0–9.0 | 2–14 | 14 |
Density (g/cm3) | 1.5–1.6 | 1.3–1.4 | 1.4 | 1.2 | 0.9–12 | 1.4–1.5 | 1.5 | 1.3–1.5 | 1.4 |
Tensile Strength (MPa) | 280–580 | 400–800 | 550–900 | 175–220 | 300–800 | 400–1500 | 220–938 | 400–700 | 400–1600 |
Cellulose (%) | 82–91 | 60–70 | 71–75 | 32–42 | 46 | 71 | 68–76 | 67–78 | 70–82 |
Lignin (%) | – | 12–13 | 3.7–5.7 | 40–45 | 20 | 2.5 | 0.5–0.7 | 8–11 | 5–12 |
Tensile Modulus (GPa) | 6–13 | 10–30 | 70 | 4–6 | 7 | 28–80 | 44–128 | 9–38 | 34–82 |
Chemical Treatments Name | Coconut Fiber | Sisal Fiber | Jute Fiber | Banana Fiber | Hemp Fiber | Kenaf Fiber | Hemp Fiber | Flax Fiber | Oil Palm Fiber | Cotton Fiber | Significance or Improvement | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkaline treatment | yes | yes | yes | yes | – | yes | – | – | yes | – | Adhesion | [88,98,99] |
Silane treatment | – | yes | yes | yes | – | – | – | – | – | – | Control Fiber Swelling | [86,99,100] |
Acetylation treatment | – | - | - | – | – | – | yes | yes | – | – | Moisture absorption | [20,101] |
Benzoylation treatment | – | - | yes | – | – | – | – | yes | – | – | Thermal stability | [102,103] |
Peroxide treatment | – | - | - | – | – | – | – | yes | – | – | Adhesion | [103,104] |
Maleated coupling agents | – | yes | yes | – | yes | yes | – | yes | – | – | Bonding between fibers and matrix | [105] |
Sodium chlorite treatment | – | yes | – | – | yes | yes | yes | yes | – | – | Moisture absorption | [105] |
Acrylation and acrylonitrile grafting | – | yes | yes | – | – | – | – | yes | – | yes | coupling | [6,106] |
Isocyanate treatment | – | yes | yes | – | – | yes | – | yes | – | – | Bonding | [94,106] |
Oleoyl chloride treatment | – | yes | yes | – | – | – | – | – | – | – | Wettability | [85,93,106] |
Stearic acid treatment | yes | – | yes | – | – | – | – | yes | – | yes | Water resistance | [99,105,107] |
Permanganate treatment | – | yes | yes | – | – | – | – | yes | yes | – | Adhesion | [20] |
Fungal treatment | – | – | – | – | yes | – | yes | yes | – | – | Remove lignin | [78,108] |
Triazine treatment | – | – | – | – | – | – | – | – | – | yes | Adhesion | [109] |
Treatment Name | Strength of Chemical (of Weight) | Soaking Time | Curing Temperature | References |
---|---|---|---|---|
Alkaline | 5% | 2 h | Room temperature | [76,110,111] |
Bleaching | 5% | 1 h | 60 °C | [7,112] |
Benzoyl Chloride | 30% | 30 min | 80 °C | [72] |
Potassium Permanganate | 0.125% | 3 min | Room temperature | [7,103] |
Maleated Coupling Agents | 20% | 5–10 min | Room temperature | [105] |
Acetylation | 2% | 2 h | Room temperature | [113] |
Isocyanates | 5% | 2 h | 40–45 °C | [114] |
Chemical Treatments | Concentration | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (GPa) |
---|---|---|---|---|
Alkali | 5% and 10% | 34 | 1 | 3.3 |
Benzoylation | Different weight % | 45 | 7 | 1.01 |
Isocyanate | Different weight % | 42 | 4 | 4.1 |
Permanganate | 0.06% | 33 | 5 | 1.1 |
Stearic | 4% | 32 | 5 | 1 |
Natural Fibers | Applications |
---|---|
Jute Fiber | Skateboards, Tensil, Hockey, wind-turbines blades, door knobs, automobile interior and exterior parts |
Sisal Fiber | In construction industry and also flax and sisal used in interior door-lining panels, MercedesBenz E-Class model |
Oil Palm Fiber | Structural insulated panel, fencing and decking |
Wood Fiber | In decks, doors, and back seat of automobile as well as molded panel components |
Coconut Fiber | Soundproofing, cotton with PP/PET fibers used in trunk |
Flax Fiber | Snowboarding laptop cases, tennis racket, automobile parts such as rearview mirror, and visor in two-wheeler; geopolymers panels and Chevrolet Impala automobile trim panels |
Kenaf Fiber | Clothing-grade cloth passenger car bumper beam, animal bedding, material that absorbs oil and liquids, packing material and mobile cases, and bags |
Coir Fiber | Storage tank, packing material, and engine transmission cover; Brazilian trucks’ trim parts of seat cushions |
Bagasse Fiber | Window frames and panels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, M.Y.; Imran, R.; Arif, Z.U.; Akram, N.; Arshad, H.; Al Rashid, A.; García Márquez, F.P. Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings 2021, 11, 293. https://doi.org/10.3390/coatings11030293
Khalid MY, Imran R, Arif ZU, Akram N, Arshad H, Al Rashid A, García Márquez FP. Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings. 2021; 11(3):293. https://doi.org/10.3390/coatings11030293
Chicago/Turabian StyleKhalid, Muhammad Yasir, Ramsha Imran, Zia Ullah Arif, Naveed Akram, Hassan Arshad, Ans Al Rashid, and Fausto Pedro García Márquez. 2021. "Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites" Coatings 11, no. 3: 293. https://doi.org/10.3390/coatings11030293
APA StyleKhalid, M. Y., Imran, R., Arif, Z. U., Akram, N., Arshad, H., Al Rashid, A., & García Márquez, F. P. (2021). Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings, 11(3), 293. https://doi.org/10.3390/coatings11030293