RETRACTED: A Potential Role of Apelin-13 against Hepatic Injury and Metabolic Disorders in Preeclampsia Induced by L-NAME
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Blood Pressure
2.2. Blood Sampling
2.3. Serum Analysis
- Measurement of serum insulin level: was carried out as described by Temple et al. [23] using rat insulin ELISA Kit (from RayBiotech.com (accessed on 29 March 2021)).
- Measurement of serum glucose level: was carried out as described by Tietz et al. [24] using Biodiagnostic kit for colorimetric determination of serum urea concentration (from (Biodiagnositc Company, Dokki, Giza, Egypt).
- Calculation of Homeostatic model assessment for insulin resistance (HOMA-IR): The results of glucose and insulin measurements were introduced into equations to measure the HOMA-IR, as a measure of insulin resistance and beta cell function. Many equations were designed to calculate these indices. In this study the simplest and accurate equation was used HOMA = serum insulin (µU/mL) × [serum glucose (mg/dL)/405] [25].
- Measurement of serum cholesterol level: was carried out as described by Varley and Richmond [26] using Biodiagnostic kit for colorimetric determination of serum urea concentration (from (Biodiagnositc Company, Dokki, Giza, Egypt).
- Measurement of serum triglyceride level: was carried out as described by Fossati and Prencipe [27] using Biodiagnostic kit for colorimetric determination of serum urea concentration (from (Biodiagnositc Company, Dokki, Giza, Egypt).
- Measurement of serum AST and ALT levels: was carried out as described using bio Merieux kit (France).
- Measurement of serum creatinine: was carried out as described by Schirmeister et al. [28] using Biodiagnostic kit for colorimetric determination of serum creatinine concentration (Biodiagnositc Company, Dokki, Giza, Egypt).
- Measurement of serum NO: Was estimated as nitrite, a NO metabolite, by monitoring of reduction of NO3− to NO2− by nitrate reductase (sigma), then nitrite levels were measured using the calorimetric Griess Reaction [29].
- Measurement of serum uric acid: was done as showed by Zhao et al. [30], utilizing Biodiagnostic kit for colorimetric determination of serum uric acid concentration (from (Biodiagnositc Company, Dokki, Giza, Egypt).
2.4. Histopathological Examination
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alrahmani, L.; Willrich, M. The Complement Alternative Pathway and Preeclampsia. Curr. Hypertens. Rep. 2018, 20, 40. [Google Scholar] [CrossRef]
- Gürlek, B.; Yılmaz, A.; Durakoglugil, M.E.; Karakas, S.; Kazaz, I.M.; Önal, Ö.; Atıroglu, Ö.S. Evaluation of serum apelin-13 and apelin-36 concentrations in preeclamptic pregnancies. J. Obstet. Gynaecol. Res. 2020, 46, 58–65. [Google Scholar] [CrossRef]
- De Souza Rugolo, L.M.; Bentlin, M.R.; Trindade, C.E. Preeclampsia: Effect on the Fetus and Newborn. NeoReviews 2011, 12, 198–206. [Google Scholar] [CrossRef]
- Oyston, C.J.; Stanley, J.L.; Baker, P.N. Potential targets for the treatment of preeclampsia. Expert Opinion on Ther. Targets 2015, 19, 1517–1530. [Google Scholar] [CrossRef]
- Bremer, L.; Schramm, C.; Tiegs, G. Immunology of hepatic diseases during pregnancy. Semin. Immunopathol. 2016, 38, 669–685. [Google Scholar] [CrossRef]
- Malamitsi-Puchner, A.; Briana, D.D.; Boutsikou, M.; Kouskouni, E.; Hassiakos, D.; Gourgiotis, D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics 2007, 119, e1314–e1318. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 2013, 219, R13–R35. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigné, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005, 146, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, K.; Takayama, K.; Zou, M.X.; Kumaki, I.; Zhang, W.; Kumano, K.; Fujimiya, M. The novel peptide apelin lowers blood pressure via a nitric oxidedependent mechanism. Regul Pept. 2001, 99, 87–92. [Google Scholar] [CrossRef]
- Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharm. Ther. 2005, 107, 198–211. [Google Scholar] [CrossRef]
- Heinonen, M.V.; Purhonen, A.K.; Miettinen, P.; Pääkkönen, M.; Pirinen, E.; Alhava, E.; Akerman, K.; Herzig, K.H. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul. Pept. 2005, 130, 7–13. [Google Scholar] [CrossRef]
- Kasai, A.; Shintani, N.; Oda, M.; Kakuda, M. Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem. Biophys. Res. Commun. 2004, 325, 395–400. [Google Scholar] [CrossRef]
- Kunduzova, O.; Alet, N.; Delesque-Touchard, N.; Millet, L.; Castan-Laurell, I.; Muller, C.; Dray, C.; Schaeffer, P.; Herault, J.P.; Savi, P.; et al. Apelin/APJ signaling system: A potential link between adipose tissue and endothelial angiogenic processes. FASEB J. 2008, 22, 4146–4153. [Google Scholar] [CrossRef] [PubMed]
- Sörhede Winzell, M.; Magnusson, C.; Ahrén, B. The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul. Pept. 2005, 131, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, K.; Masaki, T.; Gotoh, K.; Chiba, S.; Katsuragi, I.; Tanaka, K.; Kakuma, T.; Yoshimatsu, H. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 2007, 148, 2690–2697. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Arafah, M. Apelin protect against multiple organ injury following hemorrhagic shock and decrease the inflammatory response. Int. J. Appl. Basic Med. Res. 2015, 5, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Than, A.; Zhang, X.; Leow, M.K.S.; Poh, C.L.; Chong, S.K.; Chen, P. Apelin attenuates oxidative stress in human adipocytes. J. Biol. Chem. 2014, 289, 3763–3774. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, R.; Wang, W.; Xu, F.; Xi, Y.; Brown, R.; Zhang, H.; Shi, L.; Zhu, D.; Gong, D. Fc-apelin fusion protein attenuates lipopolysaccharide-induced liver injury in mice. Sci. Rep. 2018, 8, 11428. [Google Scholar] [CrossRef]
- Abdul Aziz, S.H.; John, C.M.; Mohamed Yusof, N.I.; Massita, N.; Rajesh, R.; Adam, A.; Fazlin, M.F. Animal Model of Gestational Diabetes Mellitus with Pathophysiological Resemblance to the Human Condition Induced by Multiple Factors (Nutritional, Pharmacological, and Stress) in Rats. Biomed. Res. Int. 2016, 2016, 9704607. [Google Scholar] [CrossRef]
- Shu, W.; Li, H.; Gong, H.; Zhang, M.; Niu, X.; Ma, Y.; Zhang, X.; Cai, W.; Yang, G.; Wei, M.; et al. Evaluation of blood vessel injury, oxidative stress and circulating inflammatory factors in an L-NAME-induced preeclampsia-like rat model. Exp. Ther. Med. 2018, 16, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Kong, D.; Qin, X.; Li, Y.; Teng, X.; Huang, X. Apelin as a novel drug for treating preeclampsia. Exp. Ther. Med. 2017, 14, 5917–5923. [Google Scholar] [CrossRef]
- Abubakar, M.G.; Ukwuani, A.N.; Mande, U.U. Antihypertensive activity of Hibiscus Sabdariffa aqueous calyx extract in Albino rats. Sky J. Biochem. Res. 2015, 4, 16–20. [Google Scholar]
- Temple, R.C.; Clark, P.M.; Hales, C.N. Measurement of insulin secretion in type II diabetes: Problems and pitfalls. Diabet. Med. 1992, 9, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Tietz, N.W.; Cook, T.; McNiven, M.A. Clinical Guide to Laboratory Tests; W.B. Saunders: Philadelphia, PA, USA, 1995; pp. 509–512. [Google Scholar]
- Sun, G.; Bishop, J.; Khallili, S.; Vasdev, S.; Gill, V.; Pace, D. Serum visfatin concentrations are positively correlated with serum triacylglycerols and downregulated by overfeeding in healthy young men. Am. J. Clin. Nutr. 2007, 85, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Varley, H.; Richmond, S. Determination of Total, Free and Ester Cholesterol Using Reaction with Ferric Chloride and Sulfuric Acid. In Practical Clinical Biochemistry, 4th ed.; Jaypee Brothers Medical Pub: New Delhi, India, 1976; p. 313. [Google Scholar]
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Ann. Clin. Biochem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef]
- Schirmeister, J.; Willmann, H.; Kieffr, H. Plasma Creatinine as Rough Indicator DER Of Renal Function. Dtsch. Med. Wochenschr. 1964, 89, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Ignarro, L.J.; Fukuto, J.M.; Griscavage, J.M.; Rogers, N.E.; Byrns, R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from Larginine. Proc. Natl. Acad. Sci. USA 1993, 90, 8103–8107. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X. Lu, W.; Liao, H.; Liao, F. Uricase based methods for determination of uric acid in serum. Microchim. Acta. 2009, 164, 1–6. [Google Scholar] [CrossRef]
- Suzuki, K.; Ota, H.; Sasagawa, S.; Sakatani, T.; Fujikura, T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem. 1983, 132, 345–352. [Google Scholar] [CrossRef]
- Litwack, G.; Bothwell, J.W.; Williams, J.N.; Elvehjem, C.A. A colorimetric assay for xanthine oxide in rat liver homogenates. J. Biol. Chem. 1953, 200, 303–310. [Google Scholar] [CrossRef]
- Drury, R.; Wallington, E. Preparation and Fixation of Tissues; Oxford University Press: Oxford, UK, 1980; pp. 41–54. [Google Scholar]
- Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998, 251, 471–476. [Google Scholar] [CrossRef]
- Busch, R.; Strohbach, A.; Pennewitz, M.; Lorenz, F.; Bahls, M.; Busch, M.C.; Felix, S.B. Regulation of the endothelial apelin/APJ system by hemodynamic fluid flow. Cell Signal. 2015, 27, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Dacaj, R.; Izetbegovic, S.; Stojkanovic, G.; Dreshaj, S. Elevated Liver Enzymes in Cases of Preeclampsia and Intrauterine Growth Restriction. Med. Arch. 2016, 70, 44–47. [Google Scholar] [CrossRef]
- Eckman, D.M.; Gupta, R.; Rosenfeld, C.R.; Morgan, T.M.; Charles, S.M.; Mertz, H.; Moore, L.G. Pregnancy increases myometrial artery myogenic tone via NOS- or COX-independent mechanisms. Am. J. Physiol Regul. Integr. Comp. Physiol. 2012, 303, R368–R375. [Google Scholar] [CrossRef]
- Vechoropoulos, M.; Ish-Shalom, M.; Shaklai, S.; Sack, J.; Stern, N.; Tordjman, K.M. The proatherogenic effect of chronic nitric oxide synthesis inhibition in ApoE-Null mice is dependent on the presence of PPAR α. PPAR Res. 2014, 2014, 124583. [Google Scholar] [CrossRef]
- Nishida, M.; Okumura, Y.; Oka, T.; Toiyama, K.; Ozawa, S.; Itoi, T.; Hamaoka, K. The role of apelin on the alleviative effect of Angiotensin receptor blocker in unilateral ureteral obstruction-induced renal fibrosis. Nephron. Extra. 2012, 2, 39–47. [Google Scholar] [CrossRef]
- Raafat, N.A.; Fathy, M.A. Serum Adropin Levels in a Preeclampsia Like L-Name Rat Model Treated with Sildenafil Citrate. Med. J. Cairo Univ. 2018, 86, 3753–3765. [Google Scholar]
- Carty, D.M.; Delles, C.; Dominiczak, A.F. Novel biomarkers for predicting preeclampsia. Trends Cardiovasc. Med. 2008, 18, 186–194. [Google Scholar] [CrossRef]
- Khoury, J.; Amundsen, A.L.; Tonstad, S.; Henriksen, T.; Ose, L.; Retterstøl, K.; Iversen, P.O. Evidence for impaired physiological decrease in the uteroplacental vascular resistance in pregnant women with familial hypercholesterolemia. Acta Obste Gynecol. Scand. 2009, 88, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Diamond, P.; Singh, G.; Bell, C.M. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. BJOG 2006, 113, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ziaei, S.; Bonab, K.M.; Kazemnejad, A. Serum lipid levels at 28–32 weeks gestation and hypertensive disorders. Hypertens Pregnancy 2006, 25, 3–10. [Google Scholar] [CrossRef]
- Gofman, J.; Delalla, O.; Glazier, F.; Freeman, N.K. The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. J. Clin. Lipidol. 2007, 1, 104–141. [Google Scholar] [CrossRef]
- Rymer, J.; Constable, S.; Lumb, P.; Crook, M. Serum lipoprotein (a) and apolipoproteins during pregnancy and postpartum in normal women. J. Obstet Gynaecol. 2002, 22, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Alahakoon, T.I.; Medbury, H.J.; Williams, H.; Lee, V.W. Lipid profiling in maternal and fetal circulations in preeclampsia and fetal growth restriction-a prospective case control observational study. BMC Pregnancy Childbirth 2020, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A. Maternal Serum Lipids in Women with Pre-eclampsia. Ann. Med. Health Sci. Res. 2014, 4, 638–641. [Google Scholar] [CrossRef]
- Masuyama, H.; Suwaki, N.; Nakatsukasa, H.; Masumoto, A.; Tateishi, Y.; Hiramatrsu, Y. Circulating angiogenic factors in preeclampsia, gestational proteinuria, and preeclampsia superimposed on chronic glomerulonephritis. Am. J. Obstet Gynecol. 2006, 194, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Thadhani, R.; Ecker, J.; Mutter, W.; Wolf, M.; Smirnakis, K.; Sukhatme, V.; Levine, R.; Karumanchi, S. Insulin resistance and alterations in angiogenesis. Hypertension 2004, 43, 988–992. [Google Scholar] [CrossRef]
- Jia, Y.X.; Lu, Z.F.; Zhang, J.; Pan, C.S.; Yang, J.H.; Zhao, J.; Yu, F.; Duan, X.; Tang, C.S.; Qi, Y.F. Apelin activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides 2007, 28, 2023–2029. [Google Scholar] [CrossRef]
- Gopaul, N.; Manraj, M.; Hébé, A.; Yan, S.; Johnston, A.; Carrier, M.; Anggård, E. Oxidative stress could precede endothelial dysfuncti on and insulin resistance in Indian Mauritians with impaired glucose metabolism. Diabetologia 2001, 44, 706–712. [Google Scholar] [CrossRef]
Group 1 n = 10 | Group 2 n = 10 | Group 3 n = 12 | Group 4 n = 11 | |
---|---|---|---|---|
Creatinine (mg/dL) | 0.40 ± 0.01 | 0.79 ± 0.10 | 1.98 ± 0.20 a,b | 1.00 ± 0.20 a,b,c |
p value of LSD | p > 0.05 | p < 0.001 a,b | p < 0.001 a,b,c | |
Uric acid (mg/dL) | 20.05± 1.58 | 23.02 ± 2.02 | 34.02 ± 2.02 a,b | 25.03 ± 2.01 a,b,c |
p value of LSD | p > 0.05 | p < 0.001 a,b | p < 0.001 a,b,c | |
Nitric oxide (NO) (mg/dl) | 50.03 ± 2.02 | 47.02 ± 2.05 a | 22.05 ± 2.58 a,b | 43.02 ± 1.95 a,b,c |
p value of LSD | p > 0.05 | p < 0.05 a | p < 0.001 a,b | p < 0.001 a,b,c |
Myeloperoxidase (nmol/min/mL) | 14.40 ± 0.87 | 45.36 ± 2.36 | 35.67 ± 1.30 a,b | 29.81 ± 2.25 a,b,c |
p value of LSD | p > 0.05 | p < 0.001 a,b | p < 0.001 a,b,c | |
Xanthine oxidase (U/g) | 12.03 ± 1.03 | 17.05 ± 1.69 | 49.58 ± 2.02 a,b | 21.02 ± 1.59 a,b,c |
p value of LSD | p > 0.05 | p < 0.001 a,b | p < 0.001 a,b,c |
Findings | Control Group | Normal Pregnant Group | Preeclampsia | Preeclampsia + Apelin Group |
---|---|---|---|---|
Normal hepatic structure | ++++ | ++++ | ------ | -+++ |
Lobular inflammation | ------ | ------ | ++++ | - - - + |
Fibrosis | ------ | ------ | ++++ | ------ |
Portal inflammation | ------ | ------ | ++++ | - - - + |
Few inflammatory cells | ------ | ------ | ++++ | - - - + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, R.Z.; Diab, A.A.A.; Zahra, M.H.; Attia, M.S.; Moursi, S.M.M.; Al-Baqami, N.M. RETRACTED: A Potential Role of Apelin-13 against Hepatic Injury and Metabolic Disorders in Preeclampsia Induced by L-NAME. Coatings 2021, 11, 391. https://doi.org/10.3390/coatings11040391
Hamza RZ, Diab AAA, Zahra MH, Attia MS, Moursi SMM, Al-Baqami NM. RETRACTED: A Potential Role of Apelin-13 against Hepatic Injury and Metabolic Disorders in Preeclampsia Induced by L-NAME. Coatings. 2021; 11(4):391. https://doi.org/10.3390/coatings11040391
Chicago/Turabian StyleHamza, Reham Z., Abdel Aziz A. Diab, Mansour H. Zahra, Mai S. Attia, Suzan M. M. Moursi, and Najah M. Al-Baqami. 2021. "RETRACTED: A Potential Role of Apelin-13 against Hepatic Injury and Metabolic Disorders in Preeclampsia Induced by L-NAME" Coatings 11, no. 4: 391. https://doi.org/10.3390/coatings11040391
APA StyleHamza, R. Z., Diab, A. A. A., Zahra, M. H., Attia, M. S., Moursi, S. M. M., & Al-Baqami, N. M. (2021). RETRACTED: A Potential Role of Apelin-13 against Hepatic Injury and Metabolic Disorders in Preeclampsia Induced by L-NAME. Coatings, 11(4), 391. https://doi.org/10.3390/coatings11040391