Effects of Oxygen Partial Pressure on Wood-Based Activated Carbon Treated with Vacuum Ultraviolet Light
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. VUV Treatment
2.3. Characterizations
2.3.1. Chemical Analysis
2.3.2. Physical Analysis
2.3.3. Water Adsorption
3. Results and Discussions
3.1. Chemical Properties
3.2. Physical Properties
3.3. Water Vapor Adsorption Characteristic
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ismadji, S.; Sudaryanto, Y.; Hartono, S.B.; Setiawan, L.E.K.; Ayucitra, A.J.B.T. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: Pore structure development and characterization. Bioresour. Technol. 2005, 96, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Srinivasan, M.P.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. Adv. Mater. 2000, 12, 62–65. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- De Jonge, R.J.; Breure, A.M.; van Andel, J.G. Bioregeneration of powdered activated carbon (PAC) loaded with aromatic compounds. Water Res. 1996, 30, 875–882. [Google Scholar] [CrossRef]
- Inomata, K.; Kanazawa, K.; Urabe, Y.; Hosono, H.; Araki, T. Natural gas storage in activated carbon pellets without a binder. Carbon 2002, 40, 87–93. [Google Scholar] [CrossRef]
- Maeda, S.; Kuwae, H.; Sakamoto, K.; Shoji, S.; Mizuno, J. Water-Electrokinetic Power Generation Device Using Flexible Woody Carbon Film. In 2019 IEEE 32nd International Conference on Micro Electro Electro Mechanical Systems (MEMS); IEEE: Seoul, Korea, January 2019; pp. 233–236. [Google Scholar] [CrossRef]
- Funabashi, T.; Mizuno, J.; Sato, M.; Kitajima, M.; Matsuura, M.; Shoji, S. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors. APL Mater. 2013, 1, 032104. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tang, Y.; Song, J.; Yang, W.; Wang, M.; Zhu, C.; Zhao, W.; Zheng, J.; Lin, Y. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 2018, 129, 236–244. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Merino, M.A.; López-Ramón, V.; Moreno-Castilla, C. A study of the static and dynamic adsorption of Zn (II) ions on carbon materials from aqueous solutions. J. Colloid Interface Sci. 2005, 288, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.F.; Thomas, K.M. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir 2000, 16, 1114–1122. [Google Scholar] [CrossRef]
- Macías-García, A.; Gómez-Serrano, V.; Alexandre-Franco, M.F.; Valenzuela-Calahorro, C. Adsorption of cadmium by sulphur dioxide treated activated carbon. J. Hazard. Mater. 2003, 103, 141–152. [Google Scholar] [CrossRef]
- Lee, D.; Hong, S.H.; Paek, K.H.; Ju, W.T. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment. Surf. Coat. Technol. 2005, 200, 2277–2282. [Google Scholar] [CrossRef]
- ChangMing, D.; DongWei, H.; HongXia, L.; MuDan, X.; Kui, W.; Lu, Z.; ZhiYi, L.; TengFei, C.; JianMin, M.; Dong, G.; et al. Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem. Plasma Process. 2013, 33, 65–82. [Google Scholar] [CrossRef]
- Li, Q.; Ding, W.; Yong, Y.; Zeng, X.; Gao, Y. Effects of ultraviolet modification on physicochemical property and adsorption performance of biochar. Nanosci. Nanotechnol. Lett. 2016, 8, 978–984. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, X.; Chen, H.; Liu, Q.; Tang, J. Characterization of ultraviolet-modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water. Environ. Sci. Pollut. Res. 2018, 25, 10808–10819. [Google Scholar] [CrossRef]
- Domingo-García, M.; López-Garzón, F.J. & Pérez-Mendoza, M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon. J. Colloid Interface Sci. 2000, 222, 233–240. [Google Scholar]
- Watanabe, K.; INN, E.C.Y.; Zelikoff, M. Absorption coefficients of oxygen in the vacuum ultraviolet. J. Chem. Phys. 1953, 21, 1026–1030. [Google Scholar] [CrossRef]
- Marsh, H.; Reinoso, F.R. Chapter 4 Characterization of Activated Carbon. In Activated Carbon, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2006; pp. 143–242. [Google Scholar]
- Solomon, M.E. Control of humidity with potassium hydroxide, sulphuric acid, or other solutions. Bull. Entomol. Res. 1951, 42, 543–554. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Carrott, M.M.L. Lignin-from natural adsorbent to activated carbon: A review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar]
- Atkinson, R.; Carter, W.P.L. Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 1984, 84, 437–470. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.Y.; Egiebor, N.O. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Laine, N.R.; Vastola, F.J.; Walker, J.P.L. The importance of active surface area in the carbon-oxygen reaction1,2. J. Phys. Chem. 1963, 67, 2030–2034. [Google Scholar] [CrossRef]
- Gómez-Serrano, V.; Álvarez, P.M.; Jaramillo, J.; Beltrán, F.J. Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones: I. Thermal effects. Carbon 2002, 40, 513–522. [Google Scholar] [CrossRef]
- Huang, H.; Huang, H.; Zhan, Y.; Liu, G.; Wang, X.; Lu, H.; Xiao, L.; Feng, Q.; Leung, D.Y. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism. Appl. Catal. B 2016, 186, 62–68. [Google Scholar] [CrossRef]
- Kislov, V.V.; Nguyen, T.L.; Mebel, A.M.; Lin, S.H.; Smith, S.C. Photodissociation of benzene under collision-free conditions: An ab initio/Rice–Ramsperger–Kassel–Marcus study. J. Chem. Phys. 2004, 120, 7008–7017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Liu, H.; Cheng, L.; Qu, Y. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination 2010, 255, 78–83. [Google Scholar] [CrossRef]
Samples | Composition | |
---|---|---|
O [at.%] | C [at.%] | |
Untreated | 4.58 | 95.4 |
High | 21.0 | 79.0 |
Middle | 21.8 | 78.2 |
Low | 19.9 | 80.1 |
Samples | C=C/C–C [%] | C=O/C–O [%] | O–C=O [%] |
---|---|---|---|
Untreated | 58.4 | 26.6 | 15.1 |
High | 49.2 | 32.2 | 18.6 |
Middle | 48.2 | 18.1 | 33.7 |
Low | 47.3 | 20.0 | 32.7 |
Samples | Specific Surface Area [m2/g] | Pore Volume [cm3/g] | ||
---|---|---|---|---|
Untreated | Treated | Untreated | Treated | |
High | 450 | 450 | 0.26 | 0.26 |
Middle | 450 | 450 | 0.26 | 0.26 |
Low | 440 | 430 | 0.25 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, N.; Kuwae, H.; Maeda, S.; Kawamura, M.; Tezuka, A.; Shoji, S.; Mizuno, J. Effects of Oxygen Partial Pressure on Wood-Based Activated Carbon Treated with Vacuum Ultraviolet Light. Coatings 2021, 11, 411. https://doi.org/10.3390/coatings11040411
Takahashi N, Kuwae H, Maeda S, Kawamura M, Tezuka A, Shoji S, Mizuno J. Effects of Oxygen Partial Pressure on Wood-Based Activated Carbon Treated with Vacuum Ultraviolet Light. Coatings. 2021; 11(4):411. https://doi.org/10.3390/coatings11040411
Chicago/Turabian StyleTakahashi, Nana, Hiroyuki Kuwae, Seren Maeda, Masahiro Kawamura, Ami Tezuka, Shuichi Shoji, and Jun Mizuno. 2021. "Effects of Oxygen Partial Pressure on Wood-Based Activated Carbon Treated with Vacuum Ultraviolet Light" Coatings 11, no. 4: 411. https://doi.org/10.3390/coatings11040411
APA StyleTakahashi, N., Kuwae, H., Maeda, S., Kawamura, M., Tezuka, A., Shoji, S., & Mizuno, J. (2021). Effects of Oxygen Partial Pressure on Wood-Based Activated Carbon Treated with Vacuum Ultraviolet Light. Coatings, 11(4), 411. https://doi.org/10.3390/coatings11040411