Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Coated Samples
2.2. Characterization the Coated Test Samples
2.2.1. X-ray Photoelectron Spectroscopy (XPS)
2.2.2. Scanning Electron Microscope (SEM) and SEM/EDX
2.3. In Vitro Antibacterial Activity
2.3.1. Microbial Strains
2.3.2. Agar Diffusion Assay
2.3.3. Cell Growth Inhibition (Most Probable Number of Surviving Cells Test)
2.3.4. SEM Observation of E. coli on Coated Samples
3. Results
3.1. Elemental Composition (XPS Analysis)
3.2. Elements Distribution (EDX)
3.3. Surface Morphology (SEM)
3.4. Water Contact Angle, WCA, Surface Energy, E and its Polar, Ep and Disperse, Ed Parts
3.5. In Vitro Antimicrobial Activity
3.5.1. Diffusion Test
3.5.2. Cell Growth Inhibition
3.5.3. E. coli Cells on Coated Glass Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramstedt, M.; Ribeiro, I.A.C.; Bujdakova, H.; Mergulhão, F.J.M.; Jordao, L.; Thomsen, P.; Alm, M.; Burmølle, M.; Vladkova, T.; Can, F.; et al. Evaluating efficacy of antimicrobial and antifouling materials for urinary tract medical devices: Challenges and recommendations. Macromol. Biosci. 2019, 19, e1800384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinänen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijns, F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Murthy, S.P.; Raju, S.; Thiyagarajan, V. Biofilms Control: Biomedical and Industrial Environments; Narosa Publishing House: New Delhi, India, 2019. [Google Scholar]
- Khataee, A.; Mansoori, G.A. Nanostructured Titanium Dioxide Materials; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Kartini, I.; Khairani, I.Y.; Triyana, K.; Wahyuni, S. Nanostructured titanium dioxide for functional coatings. In Titanium Dioxide: Material for a Sustainable Environment; Intech Open: Rijeka, Croatia, 2018. [Google Scholar]
- Watté, J.; Van Zele, M.; De Buysser, K.; Van Driessche, I. Recent advances in low-temperature deposition methods of transparent, photocatalytic TiO2 coatings on polymers. Coatings 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Othman, S.H.; Salam, N.R.A.; Zainal, N.; Basha, R.K.; Talib, R.A. Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int. J. Photoenergy 2014, 2014, 945930. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J. Copper’s Virus-Killing Powers were Known Even to the Ancients. Available online: https://www.smithsonianmag.com/science-nature/copper-virus-kill-180974655/ (accessed on 14 April 2020).
- Wilks, S.; Michels, H.; Keevil, C. The survival of escherichia coli o157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.; Hans, M.; Mücklich, F.; Solioz, M. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl. Environ. Microbiol. 2013, 79, 2605–2611. [Google Scholar] [CrossRef] [Green Version]
- Mehtar, S.; Wiid, I.; Todorov, S. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and mycobacterium tuberculosis isolated from healthcare facilities in the western cape: An in-vitro study. J. Hosp. Infect. 2008, 68, 45–51. [Google Scholar] [CrossRef]
- Shimabukuro, M. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: A review. Antibiotics 2020, 9, 716. [Google Scholar] [CrossRef]
- Ning, C.; Wang, X.; Li, L.; Zhu, Y.; Li, M.; Yu, P.; Zhou, L.; Zhou, Z.; Chen, J.; Tan, G.; et al. concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: Implications for a new antibacterial mechanism. Chem. Res. Toxicol. 2015, 28, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, S.; Vlasceanu, G.M.; Tiplea, R.E.; Bucur, I.R.; Lemnaru, M.; Marin, M.M.; Grumezescu, A.M. Applications and toxicity of silver nanoparticles: A recent review. Curr. Top. Med. Chem. 2015, 15, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Petica, A.; Florea, A.; Gaidau, C.; Balan, D.; Anicai, L. Synthesis and characterization of silver-titania nanocomposites prepared by electrochemical method with enhanced photocatalytic characteristics, antifungal and antimicrobial activity. J. Mater. Res. Technol. 2019, 8, 41–53. [Google Scholar] [CrossRef]
- Zawadzka, K.; Kisielewska, A.; Piwoński, I.; Kądzioła, K.; Felczak, A.; Różalska, S.; Wrońska, N.; Lisowska, K. Mechanisms of antibacterial activity and stability of silver nanoparticles grown on magnetron sputtered TiO2 coatings. Bull. Mater. Sci. 2016, 39, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Brook, L.; Evans, P.; Foster, H.; Pemble, M.; Steele, A.; Sheel, D.; Yates, H. Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J. Photochem. Photobiol. A Chem. 2007, 187, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Sheel, D.W.; Brook, L.A.; Ditta, I.B.; Evans, P.; Foster, H.A.; Steele, A.; Yates, H.M. Biocidal silver and silver/titania composite films grown by chemical vapour deposition. Int. J. Photoenergy 2008, 2008, 1–11. [Google Scholar] [CrossRef]
- Page, K.; Palgrave, R.G.; Parkin, I.P.; Wilson, M.; Savin, S.L.P.; Chadwick, A.V. Titania and silver–titania composite films on glass—potent antimicrobial coatings. J. Mater. Chem. 2006, 17, 95–104. [Google Scholar] [CrossRef]
- Nigussie, G.Y.; Tesfamariam, G.M.; Tegegne, B.M.; Weldemichel, Y.A.; Gebreab, T.W.; Gebrehiwot, D.G.; Gebremichel, G.E. Antibacterial activity of ag-doped TiO2 and Ag-doped ZnO nanoparticles. Int. J. Photoenergy 2018, 2018, 5927485. [Google Scholar] [CrossRef] [Green Version]
- Mangalaraj, D.; Nithya Devi, D. Ag/TiO2 (Metal/Metal Oxide) Core Shell Nanoparticles for Biological Applications BT. In Recent Trends in Materials Science and Applications; Ebenezar, J., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–17. [Google Scholar]
- Wahyuni, E.T.; Roto, R. Silver Nanoparticle Incorporated Titanium Oxide for Bacterial Inactivation and Dye Degradation. In Titanium Dioxide: Material for a Sustainable Environment; Intech Open: Rijeka, Croatia, 2018. [Google Scholar]
- Vladkova, T.; Angelov, O.; Stoyanova, D.; Gospodinova, D.; Gomes, L.; Soares, A.; Mergulhao, F.; Ivanova, I. Magnetron co-sputtered TiO2/SiO2/Ag nanocomposite thin coatings inhibiting bacterial adhesion and biofilm formation. Surf. Coat. Technol. 2020, 384, 125322. [Google Scholar] [CrossRef]
- Desai, V.; Kaler, S.G. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 2008, 88, 855S–858S. [Google Scholar] [CrossRef] [Green Version]
- Mungkalasiri, J.; Bedel, L.; Emieux, F.; Doré, J.; Renaud, F.; Maury, F. DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization. Surf. Coat. Technol. 2009, 204, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Mungkalasiri, J.; Bedel, L.; Emieux, F.; Doré, J.; Renaud, F.N.R.; Sarantopoulos, C.; Maury, F. CVD Elaboration of nanostructured TiO2-Ag thin films with efficient antibacterial properties. Chem. Vap. Depos. 2010, 16, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Zielinska-Jurek, A.; Walicka, M.; Tadajewska, A.; Łacka, I.; Gazda, M.; Zaleska-Medynska, A. Preparation of Ag/Cu-doped titanium (IV) oxide nanoparticles in w/o microemulsion. Physicochem. Probl. Miner. Process. 2010, 45, 113–126. [Google Scholar]
- Sangchay, W.; Lek, S.; Kooptarnond, K. The photocatalytic and antibacterial activity of Cu-doped TiO2 thin films. Walailak J. Sci. Technol. 2013, 10, 19–27. [Google Scholar] [CrossRef]
- Varghese, S.; ElFakhri, S.O.; Sheel, D.W.; Sheel, P.; Bolton, F.J.E.; Foster, H.A. Antimicrobial activity of novel nanostructured cu- SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens. AMB Express 2013, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Gao, W. Polymer-Cu/TiO2 Antimicrobial Coatings BT. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing; Marquis, F., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1663–1669. [Google Scholar]
- Mungkalasiri, J.; Bedel, L.; Emieux, F.; Cara, A.V.-D.; Freney, J.; Maury, F.; Renaud, F.N. Antibacterial properties of TiO2–Cu composite thin films grown by a one step DLICVD process. Surf. Coat. Technol. 2014, 242, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, V.; Boobas, S.; Jayaprakash, J.; Rajaboopathi, M.; Han, B.; Louhi-Kultanen, M. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J. Mater. Sci. Mater. Electron. 2016, 27, 7438–7447. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Huang, X.; Zhang, Y.; Han, Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B 2016, 4, 3788–3800. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.J.; Bartlett, J.; Nolan, M.; Pillai, S.C. Cu-doped TiO2: Visible light assisted photocatalytic antimicrobial activity. Appl. Sci. 2018, 8, 2067. [Google Scholar] [CrossRef] [Green Version]
- Alavi, M.; Karimi, N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif. Cells Nanomed. Biotechnol. 2018, 46, S399–S413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nißen, S.; Heeg, J.; Wienecke, M.; Behrend, D.; Warkentin, M.; Rokosz, K.; Gaiaschi, S.; Chapon, P. Surface characterization and copper release of a-C:H:Cu coatings for medical applications. Coatings 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, A.M.; Williamson, B.A.D.; Sathasivam, S.S.; Kafizas, A.; Alqahtani, M.; Sotelo-Vazquez, C.; Buckeridge, J.; Wu, J.; Nair, S.P.; Scanlon, D.O.; et al. Enhanced photocatalytic and antibacterial ability of Cu-Doped anatase TiO2 thin films: Theory and experiment. ACS Appl. Mater. Interfaces 2020, 12, 15348–15361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahmasebizad, N.; Hamedani, M.T.; Ghazani, M.S.; Pazhuhanfar, Y. Photocatalytic activity and antibacterial behavior of TiO2 coatings co-doped with copper and nitrogen via sol–gel method. J. Sol. Gel Sci. Technol. 2019, 93, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Behnajady, M.A.; Eskandarloo, H. Characterization and photocatalytic activity of Ag-Cu/TiO2 nanoparticles prepared by sol-gel method. J. Nanosci. Nanotechnol. 2013, 13, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Ji, J.; Fu, J.; Shen, J. A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 85, 556–563. [Google Scholar] [CrossRef]
- Akhavan, O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 2009, 336, 117–124. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr. Appl. Phys. 2009, 9, 1381–1385. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kaczmarek, D.; Song, S.; Placido, F. TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opt. Electron. Rev. 2013, 21, 233–238. [Google Scholar] [CrossRef]
- Khan, S.B.; Wu, H.; Pan, C.; Zhang, Z. A mini review: Antireflective coatings processing techniques, applications and future perspective. Res. Rev. J. Mater. Sci. 2017, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Tamura, H.; Taga, S.; Tsuchiya, S. Interfacial optical absorption in TiO2–SiO2 multilayer coatings prepared by rf magnetron sputtering. Appl. Opt. 1986, 25, 2703–2706. [Google Scholar] [CrossRef]
- Vladkova, T.G.; Staneva, A.D.; Gospodinova, D.N. Surface engineered biomaterials and ureteral stents inhibiting biofilm formation and encrustation. Surf. Coat. Technol. 2020, 404, 126424. [Google Scholar] [CrossRef]
- Gao, A.; Hang, R.; Chu, P.K. Recent advances in anti-infection surfaces fabricated on biomedical implants by plasma-based technology. Surf. Coat. Technol. 2017, 312, 2–6. [Google Scholar] [CrossRef]
- Rijal, N. Most Probable Number (MPN) Test: Principle, Procedure and Results. Available online: https://microbeonline.com/probable-number-mpn-test-principle-procedure-results/ (accessed on 11 June 2017).
- Stoyanova, D.S.; Ivanova, I.A.; Angelov, O.I.; Vladkova, T.G. Antibacterial activity of thin films TiO2 doped with Ag and Cu on gracilicutes and firmicutes bacteria. Biodiscovery 2017, 20, e15076. [Google Scholar] [CrossRef] [Green Version]
- Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant. Dent. 2017, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Poncin-Epaillard, F.; Vrlinic, T.; Debarnot, D.; Mozetic, M.; Coudreuse, A.; Legeay, G.; El Moualij, B.; Zorzi, W. Surface treatment of polymeric materials controlling the adhesion of biomolecules. J. Funct. Biomater. 2012, 3, 528–543. [Google Scholar] [CrossRef] [Green Version]
- Speranza, G.; Gottardi, G.; Pederzolli, C.; Lunelli, L.; Canteri, R.; Pasquardini, L.; Carli, E.; Lui, A.; Maniglio, D.; Brugnara, M.; et al. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 2004, 25, 2029–2037. [Google Scholar] [CrossRef]
- Vladkova, T.G. Surface engineered polymeric biomaterials with improved biocontact properties. Int. J. Polym. Sci. 2010, 2010, 296094. [Google Scholar] [CrossRef] [Green Version]
- Vladkova, T.G. Surface Engineering of Polymeric Biomaterials; Smithers Rapra Technology: Shropshire, UK, 2013. [Google Scholar]
- Ploux, L.; Ponche, A.; Anselme, K. Bacteria/material interfaces: Role of the material and cell wall properties. J. Adhes. Sci. Technol. 2010, 24, 2165–2201. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]
- Altankov, G. Interaction of Cells with Biomaterial Surfaces; Bulgarian Academy of Science: Sofia, Bulgaria, 2003. [Google Scholar]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.L. A Mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus Aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Butkus, M.A.; Edling, L.; Labare, M.P. The efficacy of silver as a bactericidal agent: Advantages, limitations and considerations for future use. J. Water Supply Res. Technol. 2003, 52, 407–416. [Google Scholar] [CrossRef]
- Lansdown, A. Silver I: Its antibacterial properties and mechanism of action. J. Wound Care 2002, 11, 125–130. [Google Scholar] [CrossRef]
- Castellano, J.J.; Shafii, S.M.; Ko, F.; Donate, G.; Wright, T.E.; Mannari, R.J.; Payne, W.G.; Smith, D.J.; Robson, M.C. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int. Wound J. 2007, 4, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Nan, L.; Liu, Y.; Lü, M.; Yang, K. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J. Mater. Sci. Mater. Med. 2008, 19, 3057–3062. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V.K.; Nevěčná, T.; Zbořil, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006, 110, 16248–16253. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Danilczuk, M.; Lund, A.; Sadlo, J.; Yamada, H.; Michalik, J. Conduction electron spin resonance of small silver particles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 189–191. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Bondarenko, O.M.; Sihtmäe, M.; Kuzmičiova, J.; Ragelienė, L.; Kahru, A.; Daugelavičius, R. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in escherichia coli and pseudomonas aeruginosa. Int. J. Nanomed. 2018, 13, 6779–6790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Prieto, E.; Kiat, A. The antimicrobial action of silver nanoparticles on E. coli as revealed by atomic force microscopy. Philipp. Sci. Lett. 2017, 10, 123–129. [Google Scholar]
- Albu, M.G.; Vladkova, T.G.; Ivanova, I.A.; Shalaby, A.S.A.; Moskova-Doumanova, V.S.; Staneva, A.D.; Dimitriev, Y.B.; Kostadinova, A.S.; Topouzova-Hristova, T.I. Preparation and biological activity of new collagen composites, part I: Collagen/zinc titanate nanocomposites. Appl. Biochem. Biotechnol. 2016, 180, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Vladkova, T.G.; Ivanova, I.A.; Staneva, A.D.; Albu-Kaya, M.G.; Shalaby, A.S.A.; Moskova-Doumanova, V.; Kostadinova, A.S. Preparation and biological activity of new collagen composites, part III. collagen/(Ag/RGO) and collagen/(Ag/RGO/SiO2) composites. J. Arch. Mil. Med. 2017, in press. [Google Scholar] [CrossRef]
Sample No. | C1s, at.% | Ti2p, at.% | Ag3d, at.% | Cu2p, at.% |
---|---|---|---|---|
1. | 4.12 | 30.78 | 14.7 | 13.0 |
2. | 3.18 | 31.00 | 14.2 | 17.9 |
3. | 5.25 | 27.31 | 14.3 | 21.3 |
4. | 8.21 | 26.48 | 18.6 | 22.4 |
5. | 6.33 | 24.04 | 23.1 | 21.6 |
Samples | WCA, ° | E, mN/m | Ep, mN/m | Ed, mN/m |
---|---|---|---|---|
Sample 1-TiO2/Ag14.7 at.%/Cu13.0 at.% | 62.2 ± 0.63 | 36.12 | 11.10 | 25.02 |
Sample 2-TiO2/Ag14.0 at.%/Cu17.9 at.% | 61.9 ± 0.36 | 38.03 | 12.33 | 25.70 |
Sample 3-TiO2/Ag14.3 at.%/Cu21.3 at.% | 63.0 ± 0.71 | 35.92 | 10.12 | 25.80 |
Sample 4-TiO2/Ag18.6 at.%/Cu22.4 at.% | 60.3 ± 0.52 | 39.21 | 11.20 | 28.01 |
Sample 5-TiO2/Ag23.1 at.%/Cu21.6 at.% | 69.1 ± 0.89 | 34.96 | 17.90 | 26.06 |
Sample No. | Sterile Zone, mm | |||
---|---|---|---|---|
E. coli | P. aeruginosa | S. epidermidis | S. holeresius | |
Sample 1-TiO2/Ag14.7 at.%/Cu13.0 at.% | 1 ± 0.5 | 3 ± 0.5 | 2 ± 0.5 | 2 ± 0.5 |
Sample 2-TiO2/Ag14.0 at.%/Cu17.9 at.% | 3 ± 0.5 | 4 ± 0.5 | 5 ± 0.5 | 4 ± 0.5 |
Sample 3-TiO2/Ag14.3 at.%/Cu21.3 at.% | 2 ± 0.5 | 4 ± 0.5 | 5 ± 0.5 | 4 ± 0.5 |
Sample 4-TiO2/Ag18.6 at.%/Cu22.4 at.% | 5 ± 0.5 | 6 ± 0.5 | 7 ± 0.5 | 8 ± 0.5 |
Sample 5-TiO2/Ag23.1 at.%/Cu21.6 at.% | 6 ± 0.5 | 8 ± 0.5 | 9 ± 0.5 | 9 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodonova, D.; Ivanova, I.; Vladkova, T. Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings. Coatings 2021, 11, 473. https://doi.org/10.3390/coatings11040473
Gospodonova D, Ivanova I, Vladkova T. Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings. Coatings. 2021; 11(4):473. https://doi.org/10.3390/coatings11040473
Chicago/Turabian StyleGospodonova, Dilyana, Iliana Ivanova, and Todorka Vladkova. 2021. "Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings" Coatings 11, no. 4: 473. https://doi.org/10.3390/coatings11040473
APA StyleGospodonova, D., Ivanova, I., & Vladkova, T. (2021). Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings. Coatings, 11(4), 473. https://doi.org/10.3390/coatings11040473