Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Application
2.2. Exposure Test
2.3. Characterization
2.4. Electrochemical Test
3. Results
3.1. Effect of Coating Thickness
3.2. Stability of Coated and Uncoated Steels for 3 Months
3.3. Electrochemical Behavior of Coated and Uncoated Steels
4. Discussion
4.1. Transformation of Al2O3 to AlOOH and Its Stability
4.2. Al2O3 Coatings on X20Cr13 Steels for Geothermal Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, H.K.; Roy, S. Geothermal Energy: An Alternative Resource for the 21st Century, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–9. [Google Scholar]
- Mundhenk, N.; Huttenloch, P.; Sanjuan, B.; Kohl, T.; Steger, H.; Zorn, R. Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corros. Sci. 2013, 70, 17–28. [Google Scholar] [CrossRef]
- Nogara, J.; Zarrouk, S.J. Corrosion in geothermal environment: Part 1: Fluids and their impact. Renew. Sustain. Energy Rev. 2018, 82, 1333–1346. [Google Scholar] [CrossRef]
- Klapper, H.; Bäßler, R.; Sobetzki, J.; Weidauer, K.; Stürzbecher, D. Corrosion resistance of different steel grades in the geothermal fluid of Molasse Basin. Mater. Corros. 2013, 64, 764–771. [Google Scholar] [CrossRef]
- Bäßler, R.; Burkert, A.; Saadat, A.; Kirchheiner, R.; Finke, M. Evaluation of corrosion resistance of materials for geothermal applications. In CORROSION 2009; NACE International: Atlanta, GA, USA, 2009; p. 09377. [Google Scholar]
- Keserovic, A.; Bäßler, R.; Kamah, Y. Suitability of Alloyed Steels in Highly Acidic Geothermal Environments. In CORROSION 2014; NACE International: San Antonio, TX, USA, 2014; p. 4031. [Google Scholar]
- Yevtushenko, O.; Bäßler, R.; Pfennig, A. Corrosion behaviour of Cr13 steel in CO2 saturated brine with high chloride concentration. Mater. Corros. 2012, 63, 517–521. [Google Scholar] [CrossRef]
- Klapper, H.S.; Zadorozne, N.S.; Rebak, R.B. Localized corrosion characteristics of nickel alloys: A review. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 296–305. [Google Scholar] [CrossRef]
- Reeber, R.R. Coatings in geothermal energy production. Thin Solid Film. 1980, 72, 33–48. [Google Scholar] [CrossRef]
- Buzaianu, A.; Motoiu, P.; Csaki, I.; Ioncea, A.; Motoiu, V. Structural Properties Ni20Cr10Al2Y Coatings for Geothermal Conditions. In Proceedings of the 2nd International Research Conference on Sustainable Energy, Engineering, Materials and Environment (IRCSEEME), Mieres, Spain, 25–27 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Sugama, T.; Pyatina, T.; Redline, E.; McElhanon, J.; Blankenship, D. Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C. Polym. Degrad. Stab. 2015, 120, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Sugama, T.; Gawlik, K. Anti-silica fouling coatings in geothermal environments. Mater. Lett. 2002, 57, 666–673. [Google Scholar] [CrossRef]
- Ning, C.; Mingyan, L.; Weidong, Z. Fouling and corrosion properties of SiO2 coatings on copper in geothermal water. Ind. Eng. Chem. Res. 2012, 51, 6001–6017. [Google Scholar] [CrossRef]
- Aristia, G. Polyaniline/Silicon Dioxide Composite-Based Coating for Corrosion Protection in Geothermal Systems. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Cai, Y.; Quan, X.; Li, G.; Gao, N. Anticorrosion and scale behaviors of nanostructured ZrO2–TiO2 coatings in simulated geothermal water. Ind. Eng. Chem. Res. 2016, 55, 11480–11494. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 17, 3393–3403. [Google Scholar] [CrossRef]
- Ban, W.; Kwon, S.; Nam, J.; Yang, J.; Jang, S.; Jung, D. Al2O3 thin films prepared by plasma-enhanced chemical vapor deposition of dimethylaluminum isopropoxide. Thin Solid Film. 2017, 641, 47–52. [Google Scholar] [CrossRef]
- Vohs, J.K.; Bentz, A.; Eleamos, K.; Poole, J.; Fahlman, B.D. Chemical Vapor Deposition of Aluminum Oxide Thin Films. J. Chem. Educ. 2010, 87, 1102–1104. [Google Scholar] [CrossRef]
- Tai, T.B.; Cao, L.; Mattelaer, F.; Rampelberg, G.; Hashemi, F.S.M.; Dendooven, J.; van Ommen, J.R.; Detavernier, C.; Reyniers, M.-F. Atomic Layer Deposition of Al2O3 Using Aluminum Triisopropoxide (ATIP): A Combined Experimental and Theoretical Study. J. Phys. Chem. C 2019, 123, 485–494. [Google Scholar] [CrossRef]
- Groner, M.D.; Fabreguette, F.H.; Elam, J.W.; George, S.M. Low-Temperature Al2O3 Atomic Layer Deposition. Chem. Mater. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- Niu, B.; Qiang, L.; Zhang, J.; Zhang, F.; Hu, Y.; Chen, W.; Liang, A. Plasma sprayed α-Al2O3 main phase coating using γ-Al2O3 powders. Surf. Eng. 2019, 35, 801–808. [Google Scholar] [CrossRef]
- Tang, X.; Li, Z.; Liao, H.; Zhang, J. Growth of ultrathin Al2O3 films on n-InP substrates as insulating layers by RF magnetron sputtering and study on the optical and dielectric properties. Coatings 2019, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- García-Valenzuela, J.A.; Rivera, R.; Morales-Vilches, A.B.; Gerling, L.G.; Caballero, A.; Asensi, J.M.; Voz, C.; Bertomeu, J.; Andreu, J. Main properties of Al2O3 thin films deposited by magnetron sputtering of an Al2O3 ceramic target at different radio-frequency power and argon pressure and their passivation effect on p-type c-Si wafers. Thin Solid Film. 2016, 619, 288–296. [Google Scholar] [CrossRef]
- Nofz, M.; Dörfel, I.; Sojref, R.; Wollschläger, N.; Mosquera-Feijoo, M.; Kranzmann, A. Microstructure, smoothening effect, and local defects of alumina sol-gel coatings on ground steel. J. Sol-Gel Sci. Technol. 2017, 81, 185–194. [Google Scholar] [CrossRef]
- Nofz, M.; Zietelmann, C.; Feigl, M.; Dörfel, I.; Neumann, R.S. Microstructural origin of time-dependent changes in alumina sol–gel-coated Inconel 718 exposed to NaCl solution. J. Sol-Gel Sci. Technol. 2015, 75, 6–16. [Google Scholar] [CrossRef]
- Zheludkevich, M.; Salvado, I.M.; Ferreira, M. Sol–gel coatings for corrosion protection of metals. J. Mater. Chem. 2005, 15, 5099–5111. [Google Scholar] [CrossRef]
- Schulz, W.; Nofz, M.; Feigl, M.; Dörfel, I.; Neumann, R.S.; Kranzmann, A. Corrosion of uncoated and alumina coated steel X20CrMoV12-1 in H2O–CO2–O2 and air at 600 °C. Corros. Sci. 2013, 68, 44–50. [Google Scholar] [CrossRef]
- Tiwari, S.; Sahu, R.K.; Pramanick, A.; Singh, R. Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement of corrosion resistance. Surf. Coat. Technol. 2011, 205, 4960–4967. [Google Scholar] [CrossRef]
- McHale, J.; Auroux, A.; Perrotta, A.; Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 1997, 277, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Brandon, D. Metastable alumina polymorphs: Crystal structures and transition sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; NACE: Houston, TX, USA, 1974; pp. 168–175. [Google Scholar]
- Pfennig, A.; Wolthusen, H.; Wolf, M.; Kranzmann, A. Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German Basin. Energy Procedia 2014, 63, 5762–5772. [Google Scholar] [CrossRef] [Green Version]
- Nofz, M. Alumina Thin Films. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–44. [Google Scholar] [CrossRef]
- Wollschläger, N.; Nofz, M.; Dörfel, I.; Schulz, W.; Sojref, R.; Kranzmann, A. Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating. Mater. Corros. 2018, 69, 492–502. [Google Scholar] [CrossRef]
- Serizawa, A.; Oda, T.; Watanabe, K.; Mori, K.; Yokomizo, T.; Ishizaki, T. Formation of anticorrosive film for suppressing pitting corrosion on Al-Mg-Si alloy by steam coating. Coatings 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Marsal, A.; Ansart, F.; Turq, V.; Bonino, J.-P.; Sobrino, J.-M.; Chen, Y.M.; Garcia, J. Mechanical properties and tribological behavior of a silica or/and alumina coating prepared by sol-gel route on stainless steel. Surf. Coat. Technol. 2013, 237, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Marcelin, S.; Pébère, N.; Régnier, S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution. Electrochim. Acta 2013, 87, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Carrier, X.; Marceau, E.; Lambert, J.-F.; Che, M. Transformations of γ-alumina in aqueous suspensions: 1. Alumina chemical weathering studied as a function of pH. J. Colloid Interface Sci. 2007, 308, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ruhi, G.; Modi, O.; Singh, I. Pitting of AISI 304L stainless steel coated with nano structured sol–gel alumina coatings in chloride containing acidic environments. Corros. Sci. 2009, 51, 3057–3063. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, L.; Sun, C.; Xu, S.; Wang, C.; Lu, M.; Neville, A.; Hua, Y. A thermodynamic and kinetic study of the formation and evolution of corrosion product scales on 13Cr stainless steel in a geothermal environment. Corros. Sci. 2020, 169, 108640. [Google Scholar] [CrossRef]
- Nogara, J.; Zarrouk, S.J. Corrosion in geothermal environment Part 2: Metals and alloys. Renew. Sustain. Energy Rev. 2018, 82, 1347–1363. [Google Scholar] [CrossRef]
- Pfennig, A.; Zastrow, P.; Kranzmann, A. Influence of heat treatment on the corrosion behaviour of stainless steels during CO2-sequestration into saline aquifer. Int. J. Greenh. Gas Control 2013, 15, 213–224. [Google Scholar] [CrossRef]
- Ikeda, A.; Mukai, S.; Ueda, M. Corrosion behavior of 9 to 25% Cr steels in wet CO2 environments. Corrosion 1985, 41, 185–192. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Zhu, J.; Meng, Y. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater. Corros. 2014, 65, 1096–1102. [Google Scholar] [CrossRef]
Fe | Cr | Si | Mn | C | Ni | V | Cu | Mo |
85.7 | 12.95 | 0.45 | 0.39 | 0.23 | 0.12 | 0.067 | 0.03 | 0.03 |
Co | P | Al | Ti | Sn | Pb | S | Nb | |
0.02 | 0.016 | 0.008 | 0.004 | 0.004 | 0.001 | 0.001 | <0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristia, G.; Hoa, L.Q.; Nofz, M.; Sojref, R.; Bäßler, R. Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C. Coatings 2021, 11, 526. https://doi.org/10.3390/coatings11050526
Aristia G, Hoa LQ, Nofz M, Sojref R, Bäßler R. Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C. Coatings. 2021; 11(5):526. https://doi.org/10.3390/coatings11050526
Chicago/Turabian StyleAristia, Gabriela, Le Quynh Hoa, Marianne Nofz, Regine Sojref, and Ralph Bäßler. 2021. "Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C" Coatings 11, no. 5: 526. https://doi.org/10.3390/coatings11050526
APA StyleAristia, G., Hoa, L. Q., Nofz, M., Sojref, R., & Bäßler, R. (2021). Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C. Coatings, 11(5), 526. https://doi.org/10.3390/coatings11050526