On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer
Abstract
:1. Introduction
2. Mathematical Modeling
3. Results and Discussion
4. Tables’ Discussion
5. Conclusions
- The gradient in velocity reduces with the augmenting M, , and , whereas it enhances with the Hall parameter (m) and the shrinking parameter ().
- The velocity component enhances with augmenting M, m, while it declines with Wesinberg number ().
- The Carreau fluid temperature enhances with the rising , , and , while it reduces with the increasing (Prandtl number) values.
- The concentration of the fluid augments with enhancing while it reduces with the augmenting values.
- The skin friction coefficients () drops with the enhancing m, , and . The other component () enhances with the rising M, , and .
- The local Nusselt number depreciates with the enhancing , , , and , while the Sherwood number increases (depreciates) with the rising n, , and ( and ).
- The published and obtained results show an agreement which validates the employed analytical procedure accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Electrical conductivity | |
magnetic field strength T | |
Local Reynolds number | |
Local Skin friction | |
m | Hall parameter |
Suction/ injection parameter | |
Mass flux | |
f | Dimensionless velocity |
Dimensionless concentration | |
Dimensionless temperature | |
∞ | Condition at infinity |
x, y, and z | Coordinates (m) |
0 | Reference condition |
Similarity variable | |
Schmidt number | |
Thermal relaxation parameter | |
Dufour number | |
Stretching velocity () | |
Prandtl number | |
T | Fluid temperature (K) |
Density | |
Kinematic viscosity | |
Dynamic viscosity mPa | |
t | Time (s) |
Specific heat | |
n | Power law index |
Thermal diffusion ratio | |
Velocity slip factor | |
Convective mass transfer coefficient | |
Convective heat transfer coefficient | |
Extra stress tensor | |
M | Magnetic field interaction parameter |
Strain rate tensor | |
Stefan Boltzmann constant | |
Velocity slip parameter | |
Thermal profile slip parameter | |
Concentration profile slip parameter | |
Weissenberg number |
References
- Moradikazerouni, A.; Afrand, M.; Alsarraf, J.; Mahian, O.; Wongwises, S.; Tran, M.D. Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board. Appl. Therm. Eng. 2019, 150, 1078–1089. [Google Scholar] [CrossRef]
- Moradikazerouni, A.; Afrand, M.; Alsarraf, J.; Wongwises, S.; Asadi, A.; Nguyen, T.K. Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method. Int. J. Heat Mass Transf. 2019, 134, 1218–1226. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Eid, M.R.; Mahny, K.L. Flow and heat transfer in a porous medium saturated with a Sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption. Heat Transf. Asian Res. 2018, 47, 54–71. [Google Scholar] [CrossRef]
- Vajravelu, K. Viscous flow over a nonlinearly stretching sheet. Appl. Math. Comput. 2001, 124, 281–288. [Google Scholar] [CrossRef]
- Liu, I.C.; Wang, H.H.; Peng, Y.F. Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem. Eng. Commun. 2013, 200, 253–268. [Google Scholar] [CrossRef]
- Hayat, T.; Asad, S.; Mustafa, M.; Alsaedi, A. Boundary layer flow of Carreau fluid over a convectively heated stretching sheet. Appl. Math. Comput. 2014, 246, 12–22. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Dash, G.; Tripathy, R.; Rashidi, M.; Mishra, S. Numerical approach to boundary layer stagnation-point flow past a stretching/shrinking sheet. J. Mol. Liq. 2016, 221, 860–866. [Google Scholar] [CrossRef]
- Ajlouni, A.W.M.; Al-Rabai’ah, H.A. Fractional-calculus diffusion equation. Nonlinear Biomed. Phys. 2010, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishak, A.; Nazar, R.; Pop, I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 2008, 44, 921. [Google Scholar] [CrossRef]
- Xu, H.; Liao, S.J.; Pop, I. Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur. J. Mech. B/Fluids 2007, 26, 15–27. [Google Scholar] [CrossRef]
- Ishak, A.; Jafar, K.; Nazar, R.; Pop, I. MHD stagnation point flow towards a stretching sheet. Phys. A Stat. Mech. Its Appl. 2009, 388, 3377–3383. [Google Scholar] [CrossRef]
- Naganthran, K.; Nazar, R.; Pop, I. A study on non-Newtonian transport phenomena in a mixed convection stagnation point flow with numerical simulation and stability analysis. Eur. Phys. J. Plus 2019, 134, 1–14. [Google Scholar] [CrossRef]
- Naganthran, K.; Nazar, R.; Pop, I. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid. Int. J. Mech. Sci. 2017, 131, 663–671. [Google Scholar] [CrossRef]
- Vajravelu, K.; Hadjinicolaou, A. Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. Int. J. Eng. Sci. 1997, 35, 1237–1244. [Google Scholar] [CrossRef]
- Pop, I.; Na, T.Y. A note on MHD flow over a stretching permeable surface. Mech. Res. Commun. 1998, 25, 263–269. [Google Scholar] [CrossRef]
- Freidoonimehr, N.; Rashidi, M.M.; Mahmud, S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int. J. Therm. Sci. 2015, 87, 136–145. [Google Scholar] [CrossRef]
- Ahmad, H.; Seadawy, A.R.; Khan, T.A.; Thounthong, P. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J. Taibah Univ. Sci. 2020, 14, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Jamaludin, A.; Naganthran, K.; Nazar, R.; Pop, I. Thermal radiation and MHD effects in the mixed convection flow of Fe3O4–water ferrofluid towards a nonlinearly moving surface. Processes 2020, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.A.; Omar, Z.; Khan, I.; Baleanu, D.; Nisar, K.S. Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: Stability analysis. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.G. Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet. J. Sci. Res. 2014, 6, 257–272. [Google Scholar] [CrossRef]
- Gnaneswara Reddy, M. Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. EPJP 2014, 129, 41. [Google Scholar] [CrossRef]
- AboEldahab, E.M. Radiation effect on heat transfer in an electrically conducting fluid at a stretching surface with a uniform free stream. J. Phys. D Appl. Phys. 2000, 33, 3180. [Google Scholar] [CrossRef]
- Abo-Eldahab, E.M.; El Gendy, M.S. Radiation effect on convective heat transfer in an electrically conducting fluid at a stretching surface with variable viscosity and uniform free stream. Phys. Scr. 2000, 62, 321. [Google Scholar] [CrossRef]
- Reddy, M.G. Effects of Thermophoresis, Viscous Dissipation and Joule Heating on Steady MHD Flow over an Inclined Radiative Isothermal Permeable Surface with Variable Thermal Conductivity. J. Appl. Fluid Mech. 2014, 7, 51–61. [Google Scholar]
- Anwar, T.; Kumam, P.; Khan, I.; Thounthong, P. Generalized Unsteady MHD Natural Convective Flow of Jeffery Model with ramped wall velocity and Newtonian heating; A Caputo-Fabrizio Approach. Chin. J. Phys. 2020, 68, 849–865. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Alam, M.N.; Ahmad, H.; Sarker, M.; Alsulami, M.; Gepreel, K.A. Impact of a closed space rectangular heat source on natural convective flow through triangular cavity. Results Phys. 2021, 23, 104011. [Google Scholar] [CrossRef]
- Anwar, T.; Kumam, P.; Baleanu, D.; Khan, I.; Thounthong, P. Radiative heat transfer enhancement in MHD porous channel flow of an Oldroyd-B fluid under generalized boundary conditions. Phys. Scr. 2020, 95, 115211. [Google Scholar] [CrossRef]
- Farooq, A.; Kamran, M.; Bashir, Y.; Ahmad, H.; Shahzad, A.; Chu, Y.M. On the flow of MHD generalized maxwell fluid via porous rectangular duct. Open Phys. 2020, 18, 989–1002. [Google Scholar] [CrossRef]
- Ma, Y.; Shahsavar, A.; Moradi, I.; Rostami, S.; Moradikazerouni, A.; Yarmand, H.; Zulkifli, N.W.B.M. Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat source. Phys. A Stat. Mech. Its Appl. 2019, 123035. [Google Scholar] [CrossRef]
- Tian, Z.; Rostami, S.; Taherialekouhi, R.; Karimipour, A.; Moradikazerouni, A.; Yarmand, H.; Zulkifli, N.W.B.M. Prediction of rheological behavior of a new hybrid nanofluid consists of copper oxide and multi wall carbon nanotubes suspended in a mixture of water and ethylene glycol using curve-fitting on experimental data. Phys. A Stat. Mech. Its Appl. 2020, 549, 124101. [Google Scholar] [CrossRef]
- Shah, Z.; Islam, S.; Gul, T.; Bonyah, E.; Khan, M.A. The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018, 9, 1201–1214. [Google Scholar] [CrossRef]
- Shah, Z.; Islam, S.; Ayaz, H.; Khan, S. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current. J. Heat Transf. 2019, 141, 022401. [Google Scholar] [CrossRef]
- Khan, A.; Shah, Z.; Islam, S.; Khan, S.; Khan, W.; Khan, A.Z. Darcy–Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption. Adv. Mech. Eng. 2018, 10, 1687814018808850. [Google Scholar] [CrossRef]
- Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A. Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip. AIP Adv. 2015, 5, 067169. [Google Scholar] [CrossRef]
- Vo, D.D.; Alsarraf, J.; Moradikazerouni, A.; Afrand, M.; Salehipour, H.; Qi, C. Numerical investigation of γ-AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nanoadditives. Powder Technol. 2019, 345, 649–657. [Google Scholar] [CrossRef]
- Alsarraf, J.; Moradikazerouni, A.; Shahsavar, A.; Afrand, M.; Salehipour, H.; Tran, M.D. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys. A Stat. Mech. Its Appl. 2019, 520, 275–288. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Ahmad, H. Thermodynamic modeling of viscoelastic thin rotating microbeam based on non-Fourier heat conduction. Appl. Math. Model. 2021, 91, 973–988. [Google Scholar] [CrossRef]
- Asadi, A.; Aberoumand, S.; Moradikazerouni, A.; Pourfattah, F.; Żyła, G.; Estellé, P.; Mahian, O.; Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review. Powder Technol. 2019, 352, 209–226. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Moustapha, M.V.; Nofal, T.A.; Rashid, S.; Ahmad, H. Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results Phys. 2021, 20, 103705. [Google Scholar] [CrossRef]
- Shi, E.; Zang, X.; Jiang, C.; Mohammadpourfard, M. Entropy generation analysis for thermomagnetic convection of paramagnetic fluid inside a porous enclosure in the presence of magnetic quadrupole field. J. Therm. Anal. Calorim. 2020, 139, 2005–2022. [Google Scholar] [CrossRef]
- Soleiman, A.; Abouelregal, A.E.; Ahmad, H.; Thounthong, P. Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity. Phys. Scr. 2020, 95, 115708. [Google Scholar] [CrossRef]
- Alam, M.K.; Memon, K.; Siddiqui, A.; Shah, S.; Farooq, M.; Ayaz, M.; Nofal, T.A.; Ahmad, H. Modeling and analysis of high shear viscoelastic Ellis thin liquid film phenomena. Phys. Scr. 2021, 96, 055201. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Ahmad, H. Response of thermoviscoelastic microbeams affected by the heating of laser pulse under thermal and magnetic fields. Phys. Scr. 2020, 95, 125501. [Google Scholar] [CrossRef]
- Nisar, K.S.; Khan, U.; Zaib, A.; Khan, I.; Morsy, A. A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles. Eur. Phys. J. Plus 2020, 135, 1–19. [Google Scholar] [CrossRef]
- Carreau, P.J. Rheological equations from molecular network theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Ali, N.; Hayat, T. Peristaltic motion of a Carreau fluid in an asymmetric channel. Appl. Math. Comput. 2007, 193, 535–552. [Google Scholar] [CrossRef]
- Goodarzi, M.; Javid, S.; Sajadifar, A.; Nojoomizadeh, M.; Motaharipour, S.H.; Bach, Q.V.; Karimipour, A. Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1606–1628. [Google Scholar] [CrossRef]
- Maleki, H.; Alsarraf, J.; Moghanizadeh, A.; Hajabdollahi, H.; Safaei, M.R. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J. Cent. South Univ. 2019, 26, 1099–1115. [Google Scholar] [CrossRef]
- Hayat, T.; Saleem, N.; Ali, N. Effect of induced magnetic field on peristaltic transport of a Carreau fluid. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2407–2423. [Google Scholar] [CrossRef]
- Tshehla, M. The flow of Carreau fluid down an incline with a free surface. Int. J. Phys. Sci 2011, 6, 3896–3910. [Google Scholar]
- Ellahi, R.; Riaz, A.; Nadeem, S.; Ali, M. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium. Math. Probl. Eng. 2012, 2012. [Google Scholar] [CrossRef]
- Machireddy, G.R.; Polarapu, P.; Bandari, S. Effects of magnetic field and Ohmic heating on viscous flow of a nanofluid towards a nonlinear permeable stretching sheet. J. Nanofluids 2016, 5, 459–470. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Jin, Y.; Deng, Y.; Zuo, W.; Zhao, X.; Han, D.; Peng, Q.; Zhang, Z. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: A review. Adv. Mater. Interfaces 2018, 5, 1701052. [Google Scholar]
- Tassaddiq, A.; Khan, I.; Nisar, K.S.; Singh, J. MHD flow of a generalized Casson fluid with Newtonian heating: A fractional model with Mittag–Leffler memory. Alex. Eng. J. 2020, 59, 3049–3059. [Google Scholar] [CrossRef]
- Khan, Z.A.; Haq, S.U.; Khan, T.S.; Khan, I.; Nisar, K.S. Fractional Brinkman type fluid in channel under the effect of MHD with Caputo-Fabrizio fractional derivative. Alex. Eng. J. 2020, 59, 2901–2910. [Google Scholar] [CrossRef]
- Krisna, P.M.; Sandeep, N.; Sugunamma, V. Effects of radiation and chemical reaction on MHD convective flow over a permeable stretching surface with suction and heat generation. Walailak J. Sci. Technol. (WJST) 2015, 12, 831–847. [Google Scholar]
- Sandeep, N.; Sulochana, C.; Sugunamma, V. Radiation and magnetic field effects on unsteady mixed convection flow over a vertical stretching/shrinking surface with suction/injection. Ind. Eng. Lett. 2015, 5, 127–136. [Google Scholar]
- Jonnadula, M.; Polarapu, P.; Reddy, G. Influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface. Procedia Eng. 2015, 127, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Maleki, H.; Safaei, M.R.; Togun, H.; Dahari, M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J. Therm. Anal. Calorim. 2019, 135, 1643–1654. [Google Scholar] [CrossRef]
- Gheynani, A.R.; Akbari, O.A.; Zarringhalam, M.; Shabani, G.A.S.; Alnaqi, A.A.; Goodarzi, M.; Toghraie, D. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1699–1723. [Google Scholar] [CrossRef]
- Maleki, H.; Safaei, M.R.; Alrashed, A.A.; Kasaeian, A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J. Therm. Anal. Calorim. 2019, 135, 1655–1666. [Google Scholar] [CrossRef]
- Nazari, S.; Ellahi, R.; Sarafraz, M.; Safaei, M.R.; Asgari, A.; Akbari, O.A. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J. Therm. Anal. Calorim. 2020, 140, 1121–1145. [Google Scholar] [CrossRef]
- Biswal, S.; Sahoo, P. Hall effect on oscillatory hydromagnetic free convective flow of a visco-elastic fluid past an infinite vertical porous flat plate with mass transfer. Proc. Natl. Acad. Sci. India Sect. A 1999, 1, 45–58. [Google Scholar]
- Changal, R.M.; Ananda, R.N.; Vijaya, K.V.S. Hall-current effects on unsteady MHD flow between stretching sheet and an oscillating porous upper parallel plate with constant suction. Therm. Sci. 2011, 15, 527–536. [Google Scholar] [CrossRef]
- Datta, N.; Jana, R.N. Oscillatory magnetohydrodynamic flow past a flat plate with Hall effects. J. Phys. Soc. Jpn. 1976, 40, 1469–1474. [Google Scholar] [CrossRef]
- Aboeldahab, E.M.; Elbarbary, E.M. Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer. Int. J. Eng. Sci. 2001, 39, 1641–1652. [Google Scholar] [CrossRef]
- Khan, I.; Memon, A.A.; Memon, M.A.; Bhatti, K.; Shaikh, G.M.; Baleanu, D.; Alhussain, Z.A. Finite Element Least Square Technique for Newtonian Fluid Flow through a Semicircular Cylinder of Recirculating Region via COMSOL Multiphysics. J. Math. 2020, 2020. [Google Scholar] [CrossRef]
- Rajput, U.; Kanaujia, N. Chemical reaction in MHD flow past a vertical plate with mass diffusion and constant wall temperature with hall current. Int. J. Eng. Sci. Technol. 2016, 8, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Shah, Z.; Dawar, A.; Khan, I.; Islam, S.; Ching, D.L.C.; Khan, A.Z. Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. Case Stud. Therm. Eng. 2019, 13, 100352. [Google Scholar] [CrossRef]
- Ullah, A.; Alzahrani, E.O.; Shah, Z.; Ayaz, M.; Islam, S. Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects. Coatings 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, S.O.; Dawar, A.; Shah, Z.; Khan, W.; Idrees, M.; Islam, S.; Khan, I. Entropy generation in MHD eyring–powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink. Appl. Sci. 2018, 8, 2588. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Ahmed, B.; Abbasi, F.; Alsaedi, A. Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J. Therm. Anal. Calorim. 2019, 137, 1359–1367. [Google Scholar] [CrossRef]
- Ullah, A.; Hafeez, A.; Mashwani, W.K.; Kumam, W.; Kumam, P.; Ayaz, M. Non-Linear Thermal Radiations and Mass Transfer Analysis on the Processes of Magnetite Carreau Fluid Flowing Past a Permeable Stretching/Shrinking Surface under Cross Diffusion and Hall Effect. Coatings 2020, 10, 523. [Google Scholar] [CrossRef]
- Carreau, P.; Kee, D.D.; Daroux, M. An analysis of the viscous behaviour of polymeric solutions. Can. J. Chem. Eng. 1979, 57, 135–140. [Google Scholar] [CrossRef]
- Ghadikolaei, S.; Hosseinzadeh, K.; Yassari, M.; Sadeghi, H.; Ganji, D. Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Therm. Sci. Eng. Prog. 2018, 5, 309–316. [Google Scholar] [CrossRef]
- Vo, D.D.; Shah, Z.; Sheikholeslami, M.; Shafee, A.; Nguyen, T.K. Numerical investigation of MHD nanomaterial convective migration and heat transfer within a sinusoidal porous cavity. Phys. Scr. 2019, 94, 115225. [Google Scholar] [CrossRef]
- Olajuwon, I.B. Convection heat and mass transfer in a hydromagnetic Carreau fluid past a vertical porous plate in presence of thermal radiation and thermal diffusion. Therm. Sci. 2011, 15, 241–252. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution Of Nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University Shanghai, Shanghai, China, 1992. [Google Scholar]
- Khan, N.S.; Zuhra, S.; Shah, Z.; Bonyah, E.; Khan, W.; Islam, S. Slip flow of Eyring-Powell nanoliquid film containing graphene nanoparticles. AIP Adv. 2018, 8, 115302. [Google Scholar] [CrossRef]
- Sohail, M.; Naz, R.; Shah, Z.; Kumam, P.; Thounthong, P. Exploration of temperature dependent thermophysical characteristics of yield exhibiting non-Newtonian fluid flow under gyrotactic microorganisms. AIP Adv. 2019, 9, 125016. [Google Scholar] [CrossRef] [Green Version]
Reference [75] | Present Results | ||
---|---|---|---|
0.0 | 0.4 | 0.9913393 | 0.99133929 |
0.3 | 0.4 | 1.157602 | 1.1576019 |
0.6 | 0.4 | 1.348724 | 1.3487236 |
0.6 | 0.0 | 1.344032 | 1.3440315 |
0.6 | 0.2 | 1.348725 | 1.3487250 |
0.6 | 0.4 | 1.333041 | 1.3330407 |
n | Reference [75] | Present Results | ||||
---|---|---|---|---|---|---|
0.0 | 0.6 | 0.6 | 0.2 | 0.2 | 0.1668374 | 0.16683740 |
0.1 | 0.6 | 0.6 | 0.2 | 0.2 | 0.1666775 | 0.16667749 |
0.2 | 0.6 | 0.6 | 0.2 | 0.2 | 0.4741203 | 0.47412033 |
0.2 | 0.3 | 0.7 | 1.3 | 0.2 | 0.1666314 | 0.16663136 |
0.2 | 0.5 | 0.7 | 1.3 | 0.2 | 0.1666914 | 0.16669144 |
0.2 | 0.7 | 0.7 | 1.3 | 0.2 | 0.1667505 | 0.16675047 |
n | M | Reference [75] | Present Results | |||
---|---|---|---|---|---|---|
0.5 | 0.6 | 0.5 | 0.75 | 0.75 | 1.2110832 | 1.21108321 |
1.0 | 0.6 | 0.5 | 0.75 | 0.75 | 1.0581235 | 1.058124 |
1.5 | 0.6 | 0.5 | 0.75 | 0.75 | 0.905314 | 0.9053143 |
2.0 | 0.6 | 0.5 | 0.75 | 0.75 | 0.752515 | 0.7525148 |
M | m | ||||
---|---|---|---|---|---|
0.5 | 0.5 | 0.25 | 0.30 | −1.27682794 | 0.02280230 |
1 | − | − | − | −1.47275352 | 0.03841483 |
1.5 | − | − | − | −1.52006594 | 0.04188107 |
2 | − | − | − | −1.24036061 | 0.09561891 |
− | 1 | − | − | −1.17768683 | 0.12810091 |
− | 1.5 | − | − | −1.30688120 | 0.02219887 |
− | 2 | − | − | −1.33663381 | 0.02161783 |
− | − | 0.50 | − | −1.29858315 | 0.02300640 |
− | − | 0.75 | − | −1.31813402 | 0.02318486 |
− | − | 0.95 | − | −1.32674352 | 0.02452684 |
− | − | − | 0.50 | −1.38932465 | 0.02918536 |
− | − | − | 0.70 | −1.40374526 | 0.03326478 |
− | − | − | 0.90 | −1.40374537 | 0.03326589 |
M | n | / | / | ||||
---|---|---|---|---|---|---|---|
0.5 | 1.6 | 0.1 | 0.25 | 1 | 0.25 | 0.114028 | 0.139181 |
1 | − | − | − | − | − | 0.106677 | 0.134409 |
1.5 | − | − | − | − | − | 0.100334 | 0.130193 |
2 | 1 | − | − | − | − | 0.106198 | 0.134071 |
− | 2.2 | − | − | − | − | 0.109861 | 0.136627 |
− | 2.5 | − | − | − | − | 0.113931 | 0.139391 |
− | 2.8 | 0.2 | − | − | − | 0.113041 | 0.142802 |
− | − | 0.4 | − | − | − | 0.108654 | 0.137044 |
− | − | 0.6 | − | − | − | 0.104832 | 0.131925 |
− | − | − | 0.2 | − | − | 0.125738 | 0.130361 |
− | − | − | 0.4 | − | − | 0.112658 | 0.133111 |
− | − | − | 0.6 | − | − | 0.101036 | 0.135657 |
− | − | − | − | 0.5 | − | 0.111641 | 0.133395 |
− | − | − | − | 1.0 | − | 0.106677 | 0.134407 |
− | − | − | − | 1.5 | − | 0.102281 | 0.135322 |
− | − | − | − | − | 0.1 | 0.110879 | 0.137607 |
− | − | − | − | − | 0.3 | 0.102933 | 0.131509 |
− | − | − | − | − | 0.5 | 0.096511 | 0.126388 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ikramullah; Ayaz, M.; Mashwani, W.K. On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer. Coatings 2021, 11, 566. https://doi.org/10.3390/coatings11050566
Khan S, Selim MM, Khan A, Ullah A, Abdeljawad T, Ikramullah, Ayaz M, Mashwani WK. On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer. Coatings. 2021; 11(5):566. https://doi.org/10.3390/coatings11050566
Chicago/Turabian StyleKhan, Shahid, Mahmoud M. Selim, Aziz Khan, Asad Ullah, Thabet Abdeljawad, Ikramullah, Muhammad Ayaz, and Wali Khan Mashwani. 2021. "On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer" Coatings 11, no. 5: 566. https://doi.org/10.3390/coatings11050566
APA StyleKhan, S., Selim, M. M., Khan, A., Ullah, A., Abdeljawad, T., Ikramullah, Ayaz, M., & Mashwani, W. K. (2021). On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer. Coatings, 11(5), 566. https://doi.org/10.3390/coatings11050566