Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment
2.3. Characterization
3. Results
3.1. Crystal Structure Analysis
3.2. Surface Morphological Analysis
3.3. PL Characteristics Analysis
3.4. Electron Concentration Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peelaers, H.; Van De Walle, C.G. Brillouin zone and band structure of β-Ga2O3. Phys. Status solidi 2015, 252, 828–832. [Google Scholar] [CrossRef]
- Ueda, N.; Hosono, H.; Waseda, R.; Kawazoe, H. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl. Phys. Lett. 1997, 71, 933–935. [Google Scholar] [CrossRef]
- Li, X.; Zhen, X.; Meng, S.; Xian, J.; Shao, Y.; Fu, X.; Li, D. Structuring β-Ga2O3 Photonic Crystal Photocatalyst for Efficient Degradation of Organic Pollutants. Environ. Sci. Technol. 2013, 47, 9911–9917. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Wei, Z.; Meng, X.; Wu, F.; Li, J. High-performance single crystalline UV photodetectors of β-Ga2O3. J. Alloy. Compd. 2015, 619, 572–575. [Google Scholar] [CrossRef]
- Wang, J.; Ye, L.; Wang, X.; Zhang, H.; Li, L.; Kong, C.; Li, W. High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector. J. Alloy. Compd. 2019, 803, 9–15. [Google Scholar] [CrossRef]
- Yang, J.; Ren, F.; Tadjer, M.; Pearton, S.J.; Kuramata, A. 2300V Reverse Breakdown Voltage Ga2O3Schottky Rectifiers. ECS J. Solid State Sci. Technol. 2018, 7, Q92–Q96. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-Plated Ga2O3MOSFETs With a Breakdown Voltage of Over 750 V. IEEE Electron. Device Lett. 2016, 37, 212–215. [Google Scholar] [CrossRef]
- Kozlov, A.; Krivozubov, O.; Kurdukova, E.; Lila, M. Gas sensors on Ga2O3-In2O3 thin films. In Proceedings of the 2012 28th International Conference on Microelectronics Proceedings, Institute of Electrical and Electronics Engineers (IEEE), Nis, Serbia, 13–16 May 2012; pp. 165–168. [Google Scholar]
- Jang, S.B.; Heo, G.-S.; Kim, E.-M.; Park, H.-G.; Lee, J.H.; Jung, Y.H.; Jeong, H.-C.; Han, J.-M.; Seo, D.-S. Homogeneous alignment of liquid crystals on low-temperature solution-derived gallium oxide films via IB irradiation method. Liq. Cryst. 2016, 43, 1–7. [Google Scholar] [CrossRef]
- Víllora, E.G.; Shimamura, K.; Yoshikawa, Y.; Aoki, K.; Ichinose, N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 2004, 270, 420–426. [Google Scholar] [CrossRef]
- Kuramata, A.; Koshi, K.; Watanabe, S.; Yamaoka, Y.; Masui, T.; Yamakoshi, S. High-quality β-Ga2O3single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 2016, 55, 1202A2. [Google Scholar] [CrossRef]
- Gogova, D.; Schmidbauer, M.; Kwasniewski, A.K. Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE. Cryst. Eng. Comm. 2015, 17, 6744–6752. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Iv, P.H.C.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Nomura, K.; Goto, K.; Sasaki, K.; Kawara, K.; Thieu, Q.T.; Togashi, R.; Kumagai, Y.; Higashiwaki, M.; Kuramata, A.; et al. Homoepitaxial growth of β-Ga2O3layers by halide vapor phase epitaxy. Appl. Phys. Express 2015, 8, 015503. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, T.; Yu, J.; Hu, D.; Lv, Y.; Li, W.; Dong, X.; Zhang, B.; Zhang, Y.; Feng, Z.; et al. Single crystalline β-Ga2O3 homoepitaxial films grown by MOCVD. Vacuum 2020, 178, 109440. [Google Scholar] [CrossRef]
- O’Leary, S.K.; Foutz, B.E.; Shur, M.S.; Eastman, L.F. Steady-State and Transient Electron Transport Within the III–V Nitride Semiconductors, GaN, AlN, and InN: A Review. J. Mater. Sci. Mater. Electron. 2006, 17, 87–126. [Google Scholar] [CrossRef]
- Wang, Y.; Dickens, P.T.; Varley, J.B.; Ni, X.; Lotubai, E.; Sprawls, S.; Liu, F.; Lordi, V.; Krishnamoorthy, S.; Blair, S.; et al. Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.M.; Crawford, M.H.; Jayawardena, A.; Ahyi, A.; Dhar, S. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J. Appl. Phys. 2016, 119, 103102. [Google Scholar] [CrossRef]
- Frodason, Y.K.; Johansen, K.M.; Vines, L.; Varley, J.B. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. J. Appl. Phys. 2020, 127, 075701. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lee, B.-C.; Shieu, F.-S.; Shih, H.C. Characterization and photoluminescence of Sn-doped β-Ga2O3 nanowires formed by thermal evaporation. Chem. Phys. Lett. 2020, 753, 137624. [Google Scholar] [CrossRef]
- Lyons, J.L. A survey of acceptor dopants for β-Ga2O3. Semicond. Sci. Technol. 2018, 33, 05LT02. [Google Scholar] [CrossRef]
- Ho, Q.D.; Frauenheim, T.; Deák, P. Origin of photoluminescence in β-Ga2O3. Phys. Rev. B 2018, 97, 115163. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Ren, F.-F.; Gu, S.; Ye, J. Deep-level defects in gallium oxide. J. Phys. D Appl. Phys. 2021, 54, 043002. [Google Scholar] [CrossRef]
- Shimamura, K.; Víllora, E.G.; Ujiie, T.; Aoki, K. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals. Appl. Phys. Lett. 2008, 92, 201914. [Google Scholar] [CrossRef]
- Feng, Z.; Karim, R.; Zhao, H. Low pressure chemical vapor deposition of β-Ga2O3thin films: Dependence on growth parameters. APL Mater. 2019, 7, 022514. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Li, Z.; Luan, C.; Wang, W.; Wang, M.; Feng, X.; Xiao, H.; Ma, J. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. J. Mater. Sci. 2015, 50, 3252–3257. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Qi, D.-C.; Chen, L.; Zhang, K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef] [Green Version]
- Jiao, T.; Li, Z.; Li, W.; Dong, X.; Zhang, Y.; Zhang, B.; Du, G. Stable Low Electron Concentration β-Ga2O3 Films Grown by Metal-Organic Chemical Vapor Deposition. ECS J. Solid State Sci. Technol. 2020, 9, 055013. [Google Scholar] [CrossRef]
SiH4 Flow (sccm) Annealing Time (h) | 2 | 4 | 6 | 8 | 10 | 14 |
---|---|---|---|---|---|---|
0 | 6.5 × 1016 | 4.3 × 1017 | 1.6 × 1018 | 3.3 × 1018 | 7.3 × 1018 | 2.6 × 1019 |
1 | 5.4 × 1016 | 3.8 × 1017 | 1.4 × 1018 | 3.0 × 1018 | 6.5 × 1018 | 2.1 × 1019 |
SiH4 Flow Rates | 2 | 4 | 6 | 8 | 10 | 14 |
---|---|---|---|---|---|---|
Electron concentrations | 3.6 × 1016 | 5.2 × 1017 | 2.3 × 1018 | 3.3 × 1018 | 8.0 × 1018 | 2.1 × 1019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, T.; Li, Z.; Chen, W.; Dong, X.; Li, Z.; Diao, Z.; Zhang, Y.; Zhang, B. Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD. Coatings 2021, 11, 589. https://doi.org/10.3390/coatings11050589
Jiao T, Li Z, Chen W, Dong X, Li Z, Diao Z, Zhang Y, Zhang B. Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD. Coatings. 2021; 11(5):589. https://doi.org/10.3390/coatings11050589
Chicago/Turabian StyleJiao, Teng, Zeming Li, Wei Chen, Xin Dong, Zhengda Li, Zhaoti Diao, Yuantao Zhang, and Baolin Zhang. 2021. "Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD" Coatings 11, no. 5: 589. https://doi.org/10.3390/coatings11050589
APA StyleJiao, T., Li, Z., Chen, W., Dong, X., Li, Z., Diao, Z., Zhang, Y., & Zhang, B. (2021). Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD. Coatings, 11(5), 589. https://doi.org/10.3390/coatings11050589