High-Entropy Oxides: Advanced Research on Electrical Properties
Abstract
:1. Introduction
2. High Entropy
3. Bulk High-Entropy Oxides
3.1. Classification
3.2. Electrical Properties
4. High-Entropy Oxide Thin Films
4.1. Preparation Methods
4.2. Optoelectronic Properties
5. Prospects and Applications
5.1. Existing Mature Applications
5.2. Future Candidate for Dielectric Materials in TFT
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. (Eds.) 2—High-entropy alloys: Basic concepts. In High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 13–30. [Google Scholar]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. (Eds.) 1—A brief history of alloys and the birth of high-entropy alloys. In High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–12. [Google Scholar]
- Huang, P.-K.; Yeh, J.-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 2009, 203, 1891–1896. [Google Scholar] [CrossRef]
- Lin, M.-I.; Tsai, M.-H.; Shen, W.-J.; Yeh, J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films 2010, 518, 2732–2737. [Google Scholar] [CrossRef]
- Huang, P.-K.; Yeh, J.-W. Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 2010, 62, 105–108. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, P.N.; Lin, C.M.; Chang, C.M.; Chang, Y.Y.; Wu, W. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW). Surf. Coat. Technol. 2009, 203, 3231–3234. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Murakami, H.; Yeh, J.-W.; Yeh, A.-C.; Shimoda, K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol. 2017, 316, 71–74. [Google Scholar] [CrossRef]
- Shon, Y.; Joshi, S.S.; Katakam, S.; Shanker Rajamure, R.; Dahotre, N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Mater. Lett. 2015, 142, 122–125. [Google Scholar] [CrossRef]
- Wang, L.M.; Chen, C.C.; Yeh, J.W.; Ke, S.T. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys. Mater. Chem Phys. 2011, 126, 880–885. [Google Scholar] [CrossRef]
- Rost, C.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.; Hou, D.; Jones, J.; Curtarolo, S.; Maria, J.-P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef] [Green Version]
- Bérardan, D.; Franger, S.; Dragoe, D.; Meena, A.K.; Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi (RRL) Rapid Res. Lett. 2016, 10, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Bérardan, D.; Franger, S.; Meena, A.; Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 2016, 4, 9536–9541. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.; Zheng, Q.; Mazza, A.; Skoropata, E.; Heitmann, T.; Gai, Z.; Musico, B.L.; Miceli, P.; Sales, B.C.; Keppens, V.; et al. Magnetic anisotropy in single-crystal high-entropy perovskite oxide La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films. Phys. Rev. Mater. 2020, 4, 014404. [Google Scholar] [CrossRef] [Green Version]
- Mao, A.; Xiang, H.-Z.; Zhang, Z.-G.; Kuramoto, K.; Zhang, H.; Jia, Y. A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 2020, 497, 165884. [Google Scholar] [CrossRef]
- Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S.S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, H.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Fu, J.; Zhang, P.; Peng, H.; Abney, C.W.; Jie, K.; Liu, X.; Chi, M.; Dai, S. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 2018, 6, 11129–11133. [Google Scholar] [CrossRef]
- Braun, J.L.; Rost, C.M.; Lim, M.; Giri, A.; Olson, D.H.; Kotsonis, G.N.; Stan, G.; Brenner, D.W.; Maria, J.-P.; Hopkins, P.E. Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides. Adv. Mater. 2018, 30, 1805004. [Google Scholar] [CrossRef] [PubMed]
- Trukhanov, A.V.; Vinnik, D.A.; Trofimov, E.A.; Zhivulin, V.E.; Zaitseva, O.V.; Taskaev, S.V.; Zhou, D.; Astapovich, K.A.; Trukhanov, S.V.; Yang, Y. Correlation of the Fe content and entropy state in multiple substituted hexagonal ferrites with magnetoplumbite structure. Ceram. Int. 2021, 47, 17684–17692. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Trukhanov, A.V.; Podgornov, F.V.; Trofimov, E.A.; Zhivulin, V.E.; Starikov, A.Y.; Zaitseva, O.V.; Gudkova, S.A.; Kirsanova, A.A.; Taskaev, S.V.; et al. Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. J. Eur. Ceram. Soc. 2020, 40, 4022–4028. [Google Scholar] [CrossRef]
- Zhivulin, V.E.; Trofimov, E.A.; Gudkova, S.A.; Pashkeev, I.Y.; Punda, A.Y.; Gavrilyak, M.; Zaitseva, O.V.; Taskaev, S.V.; Podgornov, F.V.; Darwish, M.A.; et al. Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials 2021, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Adv. Mater. 2019, 31, 1806236. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, D.R.; Laughlin, D.E. Introduction to the Thermodynamics of Materials, 6th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. (Eds.) Chapter 2—High-Entropy Alloys: Basic Concepts. In High Entropy Alloys; Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 13–35. [Google Scholar]
- Yu, R.-S.; Huang, C.-J.; Huang, R.-H.; Sun, C.-H.; Shieu, F.-S. Structure and optoelectronic properties of multi-element oxide thin film. Appl. Surf. Sci. 2011, 257, 6073–6078. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, Q.; Li, R.; Chen, M.; Du, X.; Zhou, S. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Appl. Phys. Lett. 2019, 115, 223901. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zhivulin, V.E.; Trofimov, E.A.; Starikov, A.Y.; Zherebtsov, D.A.; Zaitseva, O.V.; Gudkova, S.A.; Taskaev, S.V.; Klygach, D.S.; Vakhitov, M.G.; et al. Extremely Polysubstituted Magnetic Material Based on Magnetoplumbite with a Hexagonal Structure: Synthesis, Structure, Properties, Prospects. Nanomaterials 2019, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Bei, H.; Otto, F.; Pharr, G.M.; George, E.P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014, 46, 131–140. [Google Scholar] [CrossRef]
- Berardan, D.; Meena, A.K.; Franger, S.; Herrero, C.; Dragoe, N. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 2017, 704, 693–700. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Rost, C.M.; Rak, Z.; Brenner, D.W.; Maria, J.-P. Local structure of the MgxNixCoxCuxZnxO(x = 0.2) entropy-stabilized oxide: An EXAFS study. J. Am. Ceram. Soc. 2017, 100, 2732–2738. [Google Scholar] [CrossRef]
- Rák, Z.; Maria, J.P.; Brenner, D.W. Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: A DFT study. Mater. Lett. 2018, 217, 300–303. [Google Scholar] [CrossRef]
- Sarkar, A.; Djenadic, R.; Usharani, N.J.; Sanghvi, K.P.; Chakravadhanula, V.S.K.; Gandhi, A.S.; Hahn, H.; Bhattacharya, S.S. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 2017, 37, 747–754. [Google Scholar] [CrossRef]
- Stygar, M.; Dąbrowa, J.; Moździerz, M.; Zajusz, M.; Skubida, W.; Mroczka, K.; Berent, K.; Świerczek, K.; Danielewski, M. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: Novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels. J. Eur. Ceram. Soc. 2020, 40, 1644–1650. [Google Scholar] [CrossRef]
- Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Kautenburger, R.; Clemens, O.; Hahn, H. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 2018, 38, 2318–2327. [Google Scholar] [CrossRef]
- Chen, K.; Pei, X.; Tang, L.; Cheng, H.; Li, Z.; Li, C.; Zhang, X.; An, L. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 2018, 38, 4161–4164. [Google Scholar] [CrossRef]
- Anandkumar, M.; Bhattacharya, S.; Deshpande, A.S. Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols. RSC Adv. 2019, 9, 26825–26830. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Chen, F.; Shen, Q.; Han, Y.-H.; Fahrenholtz, W.G.; Zhang, L. Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. J. Am. Ceram. Soc. 2019, 102, 2228–2237. [Google Scholar] [CrossRef]
- Lim, M.; Rak, Z.; Braun, J.L.; Rost, C.M.; Kotsonis, G.N.; Hopkins, P.E.; Maria, J.P.; Brenner, D.W. Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. J. Appl. Phys. 2019, 125, 055105. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Marek, D.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2017, 216, 32–36. [Google Scholar] [CrossRef]
- Musico, B.L.; Wright, Q.; Ward, Z.; Grutter, A.; Arenholz, E.; Gilbert, D.; Mandrus, D.; Keppens, V. Tunable magnetic ordering through cation selection in entropic spinel oxides. Phys. Rev. Mater. 2019, 3, 104416. [Google Scholar] [CrossRef]
- Radoń, A.; Hawelek, L.; Lukowiec, D.; Kubacki, J.; Wlodarczyk, P. Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Sci. Rep. 2019, 9, 20078. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Musico, B.L.; Gao, X.; Hua, C.; May, A.F.; Herklotz, A.; Rastogi, A.; Mandrus, D.; Yan, J.; Lee, H.N.; et al. Single-crystal high entropy perovskite oxide epitaxial films. Phys. Rev. Mater. 2018, 2, 060404. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Ojha, S.K.; Kumar, S.; Saha, A.; Mandal, P.; Freeland, J.; Middey, S. Epitaxial stabilization of ultra thin films of high entropy perovskite. Appl. Phys. Lett. 2020, 116, 071601. [Google Scholar] [CrossRef] [Green Version]
- Okejiri, F.; Zhang, Z.; Liu, J.; Liu, M.; Yang, S.; Dai, S. Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method. ChemSusChem 2020, 13, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V.S.K.; Kübel, C.; Bhattacharya, S.S.; Gandhi, A.S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Gild, J.; Samiee, M.; Braun, J.L.; Harrington, T.; Vega, H.; Hopkins, P.E.; Vecchio, K.; Luo, J. High-entropy fluorite oxides. J. Eur. Ceram. Soc. 2018, 38, 3578–3584. [Google Scholar] [CrossRef]
- Sachkov, V.I.; Nefedov, R.A.; Amelichkin, I.V. High entropy oxide systems based on rare earth elements. IOP Conf. Ser. Mater. Sci. Eng. 2019, 597, 012005. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Wang, H.; Ma, Z.; Gao, L.; Liu, Y.; Liu, Y.; Shu, Y.; He, J. Enhanced optical reflectivity and electrical properties in perovskite functional ceramics by inhibiting oxygen vacancy formation. Ceram. Int. 2021, 47, 5549–5558. [Google Scholar] [CrossRef]
- Ganduglia-Pirovano, M.V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270. [Google Scholar] [CrossRef]
- Grzesik, Z.; Smoła, G.; Miszczak, M.; Stygar, M.; Dąbrowa, J.; Zajusz, M.; Świerczek, K.; Danielewski, M. Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide. J. Eur. Ceram. Soc. 2020, 40, 835–839. [Google Scholar] [CrossRef]
- Ajmal, H.M.S.; Khan, F.; Nam, K.; Kim, H.Y.; Kim, S.D. Ultraviolet Photodetection Based on High-Performance Co-Plus-Ni Doped ZnO Nanorods Grown by Hydrothermal Method on Transparent Plastic Substrate. Nanomaterials 2020, 10, 1225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Pu, Y.; Zhang, Q.; Shi, R.; Guo, X.; Wang, W.; Ji, J.; Wei, T.; Ouyang, T. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram. Int. 2020, 46, 7430–7437. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Chen, L.; Lui, H.-W.; Cai, M.-H.; Yeh, J.-W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 2007, 457, 77–83. [Google Scholar] [CrossRef]
- Chen, T.-K.; Wong, M.-S. Hard transparent conducting hex-element complex oxide films by reactive sputtering. J. Mater. Res. 2008, 23, 3075–3089. [Google Scholar] [CrossRef]
- Jacobson, V.; Diercks, D.; To, B.; Zakutayev, A.; Brennecka, G. Thin film growth effects on electrical conductivity in entropy stabilized oxides. J. Eur. Ceram. Soc. 2021, 41, 2617–2624. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Ruan, J.-J.; Ting, J.-M.; Su, Y.-H.; Chang, K.-S. Solution-based fabrication of high-entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 films on fluorine-doped tin oxide substrates and their piezoelectric responses. Ceram. Int. 2021, 47, 11451–11458. [Google Scholar] [CrossRef]
- Liang, Y.; Luo, B.; Dong, H.; Wang, D. Electronic structure and transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films. Ceram. Int. 2021. [Google Scholar] [CrossRef]
- Tsau, C.-H.; Yang, Y.-C.; Lee, C.-C.; Wu, L.-Y.; Huang, H.-J. The Low Electrical Resistivity of the High-entropy Alloy Oxide Thin Films. Procedia Eng. 2012, 36, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Shanthi, E.; Dutta, V.; Banerjee, A.; Chopra, K.L. Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 1980, 51, 6243–6251. [Google Scholar] [CrossRef]
- Lin, S.S. Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: The elimination of grain boundaries. Appl. Phys. Lett. 2012, 101, 122109. [Google Scholar] [CrossRef]
- Chen, T.-K.; Wong, M.-S. Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films. Thin Solid Films 2007, 516, 141–146. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, Y.; Fan, M.; Liu, H.; Li, X.; Zhang, R.; Li, M.; Qiao, Z.-A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683. [Google Scholar] [CrossRef]
- Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S.S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125. [Google Scholar] [CrossRef]
- Kim, C.; Bonnassieux, Y.; Horowitz, G. Compact DC Modeling of Organic Field-Effect Transistors: Review and Perspectives. IEEE Trans. Electron. Devices 2014, 61, 278–287. [Google Scholar] [CrossRef]
- Chang Hyun, K.; Castro-Carranza, A.; Estrada, M.; Cerdeira, A.; Bonnassieux, Y.; Horowitz, G.; Iniguez, B. A Compact Model for Organic Field-Effect Transistors with Improved Output Asymptotic Behaviors. IEEE Trans. Electron. Devices 2013, 60, 1136–1141. [Google Scholar] [CrossRef]
- Hong, X.; Liao, L. 3—Metal oxide dielectrics. In Solution Processed Metal Oxide Thin Films for Electronic Applications; Cui, Z., Korotcenkov, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 31–39. [Google Scholar]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Lupina, G.; Dudek, P.; Kozłowski, G.; Dąbrowski, J.; Lippert, G.; Müssig, H.-J.; Schroeder, T. Dielectric Properties of Thin Hf- and Zr-based Alkaline Earth Perovskite Layers. ECS Trans. 2019, 25, 147–151. [Google Scholar] [CrossRef]
- Ma, P.; Sun, J.; Zhang, G.; Liang, G.; Xin, Q.; Li, Y.; Song, A. Low–temperature fabrication of HfAlO alloy dielectric using atomic–layer deposition and its application in a low–power device. J. Alloys Compd. 2019, 792, 543–549. [Google Scholar] [CrossRef]
Crystal Structure | Composition | Preparation Temperature | Ref No | Year |
---|---|---|---|---|
Rock salt | (MgCoNiCuZn)O | 850–900 °C | [12] | 2015 |
(MgCoNiCuZn)LiO | 1000 °C | [14] | 2016 | |
(MgCoNiCuZn)LiGaO | 1000 °C | [14] | 2016 | |
PtMgCoNiCuZnOx | 900 °C | [19] | 2018 | |
MgCoNiCuZnScO | 800–1000 °C | [42,43] | 2019 | |
MgCoNiCuZnSbO | 800–1000 °C | [42,43] | 2019 | |
MgCoNiCuZnSnO | 800–1000 °C | [42,43] | 2019 | |
MgCoNiCuZnCrO | 800–1000 °C | [42,43] | 2019 | |
MgCoNiCuZnGeO | 800–1000 °C | [42,43] | 2019 | |
Spinel | (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 | 1050 °C | [44] | 2017 |
(Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4 | 1250 °C | [45] | 2019 | |
(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 | 1250 °C | [45] | 2019 | |
(Mg0.2Mn0.2Co0.2Ni0.2Cu0.2)Fe2O4 | 1250 °C | [45] | 2019 | |
(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4 | 1250 °C | [45] | 2019 | |
(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 | 1250 °C | [45] | 2017 | |
(Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 | 1250 °C | [45] | 2019 | |
(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Al2O4 | 1600 °C | [45] | 2019 | |
(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Cr2O4 | 1250 °C | [45] | 2019 | |
(Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Cr2O4 | 1250 °C | [45] | 2019 | |
(Mg0.2Mn0.2Co0.2Ni0.2Cu0.2)Cr2O4 | 1250 °C | [45] | 2019 | |
(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)Cr2O4 | 1250 °C | [45] | 2019 | |
(ZnFeNiMgCd)Fe2O4 | 520 °C | [46] | 2019 | |
(Cr,Fe,Mg,Mn,Ni)3O4 | 1000 °C | [38] | 2020 | |
Perovskite | Ba(Zr0.2Sn0.2Ti0.2Hf0.2Me0.2)O3, Me = Y3+, Nb5+, Ta5+, V5+, Mo6+, W6+ | 750 °C | [47] | 2018 |
(Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 | 1220 °C | [29] | 2019 | |
La(CrMnFeCoNi)O3 | 735 °C | [15] | 2020 | |
(La0.2Pr0.2Nd0.2Sm0.2Eu0.2)NiO3 | 635 °C | [48] | 2020 | |
BaSr(ZrHfTi)O3 | - | [49] | 2020 | |
BaSrBi(ZrHfTiFe)O3 | - | [49] | 2020 | |
Ru/BaSrBi(ZrHfTiFe)O3 | - | [49] | 2020 | |
Fluorite | (Ce,La,Pr,Sm,Y)O | 1150 °C | [50] | 2017 |
(Ce,Gd,La,Pr,Sm,Y)O | 1150 °C | [50] | 2017 | |
(Ce,La,Nd,Pr,Sm,Y)O | 1150 °C | [50] | 2017 | |
(Hf0.2Zr0.2Ce0.2)(Y0.2Yb0.2)O2–δ | 1800 °C | [51] | 2018 | |
(Hf0.2Zr0.2Ce0.2)(Yb0.2Gd0.2)O2–δ | 1800 °C | [51] | 2018 | |
(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)O2 | 1500 °C | [40] | 2018 | |
(Gd0.2La0.2Y0.2Hf0.2Zr0.2)O2 | 80 °C | [41] | 2019 | |
(Gd0.2La0.2Ce0.2Hf0.2Zr0.2)O2 | 80 °C | [41] | 2019 | |
(Sc0.2Ce0.2Pr0.2Gd0.2Ho0.2)2O3±δ | 800 °C | [52] | 2019 |
Sample | Lowest Resistivity (μΩ cm) | Sputtering Power | Annealing Temperature |
---|---|---|---|
FeCoNiOy | 19 | 100 W | 1000 °C |
Ti0.25FeCoNiOy | 28 | 1000 °C | |
Ti0.5FeCoNiOy | 26 | 1000 °C | |
Ti0.75FeCoNiOy | 31 | 900 °C | |
TiFeCoNiOy | 35 | 1000 °C | |
TiFeCoNiCuOy | 130 | 450 °C | |
TiFeCoNiCu2Oy | 250 | 350 °C | |
TiFeCoNiCu3Oy | 101 | 400 °C | |
Al0.5CrFeCoNiCuOy | 550 | 600 °C | |
AlCrFeCoNiCuOy | 1500 | 500 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhou, Y.; Liang, Z.; Ning, H.; Fu, X.; Xu, Z.; Qiu, T.; Xu, W.; Yao, R.; Peng, J. High-Entropy Oxides: Advanced Research on Electrical Properties. Coatings 2021, 11, 628. https://doi.org/10.3390/coatings11060628
Li H, Zhou Y, Liang Z, Ning H, Fu X, Xu Z, Qiu T, Xu W, Yao R, Peng J. High-Entropy Oxides: Advanced Research on Electrical Properties. Coatings. 2021; 11(6):628. https://doi.org/10.3390/coatings11060628
Chicago/Turabian StyleLi, Haoyang, Yue Zhou, Zhihao Liang, Honglong Ning, Xiao Fu, Zhuohui Xu, Tian Qiu, Wei Xu, Rihui Yao, and Junbiao Peng. 2021. "High-Entropy Oxides: Advanced Research on Electrical Properties" Coatings 11, no. 6: 628. https://doi.org/10.3390/coatings11060628
APA StyleLi, H., Zhou, Y., Liang, Z., Ning, H., Fu, X., Xu, Z., Qiu, T., Xu, W., Yao, R., & Peng, J. (2021). High-Entropy Oxides: Advanced Research on Electrical Properties. Coatings, 11(6), 628. https://doi.org/10.3390/coatings11060628