Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Method
2.3. Analytical Methods
3. Results and Discussion
3.1. The Effects of SiO2 Addition and Withdrawal Speeds
3.1.1. Average Transmittance
3.1.2. Superhydrophilic Characteristics
3.2. Thickness, Morphology, and Topography of TiO2-SiO2 Films
3.3. Rapid Plasma-Nitridation of Films by Different N2-Containing Gases
3.3.1. Surface Composition Analyses
3.3.2. Photocatalytic Performance of As-Modified Films under Visible-Light Irradiation
3.3.3. Characterization of Optical Emission Spectra
3.4. Characteristics of TiO2-SiO2 Films after Plasma-Nitridation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolis, V.; Busco, C.; Ciarletta, M.; Distasi, C.; Erriquez, J.; Fenoglio, I.; Livraghi, S.; Morel, S. Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J. Colloid Interface Sci. 2012, 369, 28–39. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Baranoff, E.; Gratzel, M. Dye-sensitized solar cells: A brief overview. Sol. Energy 2011, 85, 1172–1178. [Google Scholar] [CrossRef]
- de Jesus, M.A.M.L.; Neto, J.T.d.S.; Timò, G.; Paiva, P.R.P.; Dantas, M.S.S.; Ferreira, A.d.M. Superhydrophilic self-cleaning surfaces based on TiO2 and TiO2/SiO2 composite films for photovoltaic module cover glass. Appl. Adhes. Sci. 2015, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Kameya, Y.; Yabe, H. Optical and superhydrophilic characteristics of TiO2 coating with subwavelength surface structure consisting of spherical nanoparticle aggregates. Coatings 2019, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Tang, Y.; Gong, J.; Gong, D.; Chi, L.; Lin, C.; Chen, Z. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J. Mater. Chem. 2012, 22, 74209–77426. [Google Scholar] [CrossRef]
- Chen, T.L.; Hirose, Y.; Hitosugi, T.; Hasegawa, T. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films. J. Phys. D Appl. Phys. 2008, 41, 062005. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Li, B.; Zhu, N.; Dang, Z. In-depth study on intercalating threonine into layered double hydroxides. Appl. Clay Sci. 2011, 53, 615–620. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lien, S.Y.; Wuu, D.S.; Huang, Y.X.; Kung, C.Y. Improvement in performance of Si-based thin film solar cells with a nanocrystalline SiO2-TiO2 layer. Thin Solid Films 2014, 570, 200–203. [Google Scholar] [CrossRef]
- Arin, M.; Watté, J.; Pollefeyt, G.; Buysser, K.D.; Driessche, I.V.; Lommens, P. Low temperature deposition of TiO2 layers from nanoparticle containing suspensions synthesized by microwave hydrothermal treatment. J. Sol. Gel Sci. Technol. 2013, 66, 100–111. [Google Scholar] [CrossRef]
- Parkin, P.; Palgrave, R.G. Self-cleaning coatings. J. Mater. Chem. 2005, 15, 1689–1695. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/Visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Rampaul, A.; Parkin, I.P.; O’Neill, S.A.; DeSouza, J.; Mills, A.; Elliott, N. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 2003, 22, 35–44. [Google Scholar] [CrossRef]
- Seery, M.K.; George, R.; Floris, P.; Pillai, S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 2007, 189, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Ma, J.; Li, K.; Li, J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram. Int. 2009, 35, 1289–1292. [Google Scholar] [CrossRef]
- Bakara, A.B.; Ribeiro, C. Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications. J. Photochem. Photobiol. C 2016, 27, 1–29. [Google Scholar] [CrossRef]
- Sato, S.; Nakamura, R.; Abe, S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal. A 2005, 284, 131–137. [Google Scholar] [CrossRef]
- Wawrzyniak, B.; Morawski, A.W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Appl. Catal. B 2006, 62, 150–158. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Nosaka, Y.; Matsushita, M.; Nasino, J.; Nosaka, A.Y. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Sci. Technol. Adv. Mater. 2005, 6, 143–148. [Google Scholar] [CrossRef]
- Chekini, M.; Mohammadizadeh, M.R.; Allaei, S.M.V. Photocatalytic and superhydrophilicity properties of N-doped TiO2 nano thin films. Appl. Surf. Sci. 2011, 257, 7179–7183. [Google Scholar] [CrossRef]
- Mechiakh, R.; Sedrine, N.B.; Chtourou, R.; Bensaha, R. Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol-gel dip coating. Appl. Surf. Sci. 2010, 257, 670–676. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, D.J.; Hahn, S.H.; Kim, E.J. Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol-gel dip-coating. Mater. Lett. 2003, 57, 4151–4155. [Google Scholar] [CrossRef]
- Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K. Solid electrolyte of tantalum oxide thin film deposited by reactive DC and RF magnetron sputtering for all-solid-state switchable mirror gass. Sol. Energy Mater. Sol. Cells 2008, 92, 120–125. [Google Scholar] [CrossRef]
- Yamada, K.; Yamane, H.; Matsushima, S.; Nakamura, H.; Sonoda, T.; Miura, S.; Kumada, K. Photocatalytic activity of TiO2 thin films doped with nitrogen using a cathodic magnetron plasma treatment. Thin Solid Films 2008, 516, 7560–7564. [Google Scholar] [CrossRef]
- Lin, J.; Ma, D.; Li, Y.; Zhang, P.; Mi, H.; Deng, L.; Sun, L.; Ren, X. In situ nitrogen doping of TiO2 by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Trans. 2017, 46, 13101–13107. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Wang, Y.F.; Tsai, Y.I.; Tsai, C.H. A simple process for synthesizing nano Pt- and/or N-doped titanium dioxide powders by microwave plasma torch. J. Alloys Compd. 2014, 617, 834–840. [Google Scholar] [CrossRef]
- Zhang, X.T.; Sato, O.; Taguchi, M.; Einaga, Y.; Murakami, T.; Fujishima, A. Self-cleaning particle coating with antireflection properties. Chem. Mater. 2005, 17, 696–700. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Selvarajan, V.; Pavese, M.; Falaras, P.; Tsoukleris, D. Investigation on surface properties of TiO2 films modified by DC glow discharge plasma. Curr. Appl. Phys. 2009, 9, 1032–1037. [Google Scholar] [CrossRef]
- Machida, M.; Norimoto, K.; Watanabe, T.; Hashimoto, K.; Fujishima, A. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. J. Mater. Sci. 1999, 34, 2569–2574. [Google Scholar] [CrossRef]
- Chen, D. Anti-refection (AR) coatings made by sol-gel processes: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 313–336. [Google Scholar] [CrossRef]
- ASTM D3359-02 Standard Test Methods for Measuring Adhesion by Tape Test; ASTM International: West Conshohocken, PA, USA, 2004.
- Baltrusaitis, J.; Jayaweera, P.M.; Grassian, V.H. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 2009, 11, 8295–8305. [Google Scholar] [CrossRef]
- Chen, C.; Bai, H.; Chang, C. Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. J. Phys. Chem. C 2007, 111, 15228–15235. [Google Scholar] [CrossRef]
- Jain, N.; Paul, A.K.; Srivastava, T.S. Synthesis, characterization, cytotoxicity and DNA binding studies of diamminediethyldithiocarbamato-platinum(II) nitrate. J. Inorg. Biochem. 1992, 45, 123–127. [Google Scholar] [CrossRef]
- Pashutski, A.; Folman, M. Low temperature XPS studies of NO and N2O adsorption on Al(100). Surf. Sci. 1989, 216, 395–408. [Google Scholar] [CrossRef]
- Huang, C.M.; Chen, L.C.; Cheng, K.W.; Pan, G.T. Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation. J. Mol. Catal. A Chem. 2007, 261, 218–224. [Google Scholar] [CrossRef]
- Kim, C.; Choi, M.; Jang, J. Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst. Catal. Commun. 2010, 11, 378–382. [Google Scholar] [CrossRef]
- Hsueh, H.P.; McGrath, R.T.; Ji, B.; Felker, B.S.; Langan, J.G.; Karwacki, E.J. Ion energy distribution and optical emission spectra in NF3-based process chamber plasma. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2001, 19, 1346–1357. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, A.M.; Yang, X.F.; Niu, J.H.; Xu, Y.; Song, Z.M.; Liu, J. Plasma-catalytic selective reduction of NO with C2H4 in the presence of excess oxygen. Chin. Chem. Lett. 2005, 16, 839–842. [Google Scholar]
- Jeong, B.Y.; Kim, M.H. Effects of the process parameters on the layer formation behavior of plasma nitrided steels. Surf. Coat. Technol. 2001, 141, 182–186. [Google Scholar] [CrossRef]
- Goujon, M.; Belmonte, T.; Henrion, G. OES and FTIR diagnostics of HMDSO/O2 gas mixture for SiOx deposition assisted by RF plasma. Surf. Coat. Technol. 2004, 188–189. [Google Scholar] [CrossRef]
- Timmermans, E.A.H.; Jonkers, J.; Rodero, A.; Quintero, M.C.; Sola, A.; Gamero, A.; Schram, D.C.; van der Mullen, J.A.M. The behavior of molecules in microwave-induced plasma studies by optical emission spectroscopy. 2: Plasma at reduced pressure. Spectrochim. Acta B 1999, 54, 1085–1098. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- ASTM D3363-05 Standard Test Method for Film Hardness by Pencil Test; ASTM International: West Conshohocken, PA, USA, 2011.
- Kalidindi, R.S.R.; Subasri, R. Sol-gel nanocomposite hard coatings, anti-abrasive nanocoatings. Curr. Future Appl. 2015, 105–136. [Google Scholar] [CrossRef]
Parameter | Conditions |
---|---|
Addition of SiO2 nanoparticles (wt.%) | 0, 0.1, 1, 3 |
Withdrawal speed (mm/s) | 5, 8, 10, 20, 40 |
Gas compositions for plasma-nitridation | N2, N2/Ar(4.7%)/O2(2%), N2/Ar(6.7%) |
Withdrawal Speed (mm/s) | 5 | 8 | 10 | 20 | 40 | Glass |
---|---|---|---|---|---|---|
RMS roughness (nm) | 5.73 | 3.94 | 2.83 | 1.01 | 0.61 | 0.25 |
Irradiation Time (min) | 0 | 5 | 10 | 20 |
---|---|---|---|---|
Plasma Gases | Contact Angle (θ) | |||
N2 | 3.7 | 3.6 | 3.2 | 3.1 |
N2/Ar/O2 | 3.8 | 3.6 | 3.4 | 3.3 |
N2/Ar | 3.9 | 3.8 | 3.5 | 3.3 |
Plasma Gases | Unmodified | N2 | N2/Ar/O2 | N2/Ar | Clean Glass |
---|---|---|---|---|---|
RMS roughness (nm) | 3.94 | 3.54 | 3.50 | 3.29 | 0.25 |
Average transmittance (%) | 89.7 | 90.1 | 89.8 | 90.0 | 90.5 |
Film hardness | 7H | 7H | 7H | 7H | 9H |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.-J.; Lin, K.-T.; Kuo, Y.-M.; Tsai, C.-H. Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. Coatings 2021, 11, 784. https://doi.org/10.3390/coatings11070784
Lu B-J, Lin K-T, Kuo Y-M, Tsai C-H. Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. Coatings. 2021; 11(7):784. https://doi.org/10.3390/coatings11070784
Chicago/Turabian StyleLu, Bing-Jyh, Keng-Ta Lin, Yi-Ming Kuo, and Cheng-Hsien Tsai. 2021. "Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process" Coatings 11, no. 7: 784. https://doi.org/10.3390/coatings11070784
APA StyleLu, B.-J., Lin, K.-T., Kuo, Y.-M., & Tsai, C.-H. (2021). Preparation of High-Transparency, Superhydrophilic Visible Photo-Induced Photocatalytic Film via a Rapid Plasma-Modification Process. Coatings, 11(7), 784. https://doi.org/10.3390/coatings11070784