Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Mixed Acac with TiO2 Mesoporous
3.2. Mixed Acac and GP with TiO2 Mesoporous
3.3. Replace the ITO with Fluorine-Mixed Tin Oxide (FTO)/Glass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheema, H.; Watson, J.; Delcamp, J.H. Photon management strategies in SSM-DSCs: Realization of a >11% PCE device with a 2.3 V output. Sol. Energy 2020, 208, 747–752. [Google Scholar] [CrossRef]
- Xi, J.-Y.; Jia, R.; Li, W.; Wang, J.; Bai, F.-Q.; Eglitis, R.; Zhang, H.-X. How does graphene enhance the photoelectric conversion efficiency of dye sensitized solar cells? An insight from a theoretical perspective. J. Mater. Chem. A 2019, 7, 2730–2740. [Google Scholar] [CrossRef]
- Mandal, S.; Kandregula, G.R.; Tokala, V.N.B. A computational investigation of the influence of acceptor moieties on photovoltaic performances and adsorption onto the TiO2 surface in triphenylamine-based dyes for DSSC application. J. Photochem. Photobiol. A Chem. 2020, 401, 112745–112754. [Google Scholar] [CrossRef]
- Tan, L.; Ong, W.; Chai, S.; Mohamed, A. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 2013, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Ashraf, S.; Lyu, L.; El-Shafei, A. Tailoring dual-channel anchorable organic sensitizers with indolo [2,3-b] quinoxaline moieties: Correlation between structure and DSSC performance. Sol. Energy 2020, 206, 443–454. [Google Scholar] [CrossRef]
- Zalas, M.; Jelak, K. Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik 2020, 206, 164314–164319. [Google Scholar] [CrossRef]
- Umar, M.I.A.; Haris, V.; Umar, A.A. The influence of MoSe2 coated onto Pt film to DSSC performance with the structure TiO2/Dye/LxMoSe2Pt (0 ≤ x ≤ 5). Mater. Lett. 2020, 275, 128076–128080. [Google Scholar] [CrossRef]
- Zhang, L.; Cole, J.M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3427–3455. [Google Scholar] [CrossRef]
- Kouhestanian, E.; Mozaffari, S.A.; Ranjbar, M.; Amoli, H.S. Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer. Org. Electron. 2020, 86, 105915–105927. [Google Scholar] [CrossRef]
- Kumar, T.R.N.; Yuvaraj, S.; Kavitha, P.; Sudhakar, V.; Krishnamoorthy, K.; Neppolian, B. Aromatic amine passivated TiO2 for dye-sensitized solar cells (DSSC) with ~9.8% efficiency. Sol. Energy 2020, 201, 965–971. [Google Scholar] [CrossRef]
- Dubey, R.; Krishnamurthy, K.V.; Singh, S. Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Results Phys. 2019, 14, 102390. [Google Scholar] [CrossRef]
- Das, A.; Wary, R.R.; Nair, R.G. Cu modified ZnO nanoflakes: An efficient visible light-driven photocatalyst and a promising photoanode for dye sensitized solar cell (DSSC). Solid State Sci. 2020, 104, 106290. [Google Scholar] [CrossRef]
- Umale, S.; Sudhakar, V.; Sontakke, S.M.; Krishnamoorthy, K.; Pandit, A.B. Improved efficiency of DSSC using combustion synthesized TiO2. Mater. Res. Bull. 2019, 109, 222–226. [Google Scholar] [CrossRef]
- Udomrungkhajornchai, S.; Junger, I.J.; Ehrmann, A. Optimization of the TiO2 layer in DSSCs by a nonionic surfactant. Optik 2020, 203, 163945. [Google Scholar] [CrossRef]
- Kandasamy, M.; Murugesan, S. Aminosilicate modified mesoporous anatase TiO2@graphene oxide nanocomposite for dye-sensitized solar cells. Sol. Energy 2020, 211, 789–798. [Google Scholar] [CrossRef]
- Ünlü, B.; Özacar, M. Effect of Cu and Mn amounts mixed to TiO2 on the performance of DSSCs. Sol. Energy 2020, 196, 448–456. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Mamajiwala, A.Y.; Durgadevi, E.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimura, Y.; Hayakawa, Y. Zn and Sr mixed TiO2 mesoporous nanospheres as photoanodes in dye sensitized solar cell. Mater. Chem. Phys. 2019, 234, 259–267. [Google Scholar] [CrossRef]
- Zatirostami, A. Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik 2020, 207, 164419. [Google Scholar] [CrossRef]
- Huang, C.; Chang, K.; Hsu, C. TiO2 compact layers prepared for high performance dye-sensitized solar cells. Electrochim. Acta 2015, 170, 256–262. [Google Scholar] [CrossRef]
- Gheidari, A.M.; Soleimani, E.A.; Mansorhoseini, M.; Mohajerzadeh, S.; Madani, N.; Shams-Kolahi, W. Structural properties of indium tin oxide thin films prepared for application in solar cells. Mater. Res. Bull. 2005, 40, 1303–1307. [Google Scholar] [CrossRef]
- Hočevar, M.; Krašovec, U.O.; Bokalič, M.; Topič, M.; Veurman, W.; Brandt, H.; Hinsch, A. Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J. Ind. Eng. Chem. 2013, 19, 1464–1469. [Google Scholar] [CrossRef]
- Menezes, B.; Moreira, D.; Oliveira, H.; Marques, L.; Lima, J. Solvothermal synthesis of cerium-doped titania nanostructured materials modified with acetylacetone for solar-driven photocatalysis. J. Braz. Chem. Soc. 2020, 31, 153–161. [Google Scholar] [CrossRef]
- Pal, M.; Pal, U.; Jiménez, J.M.G.Y.; Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Peng, W.; Chen, Z.; Chen, H.; Han, L. Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 19182–19190. [Google Scholar] [CrossRef]
- Kazmi, S.A.; Hameed, S.; Ahmed, A.S.; Arshad, M.; Azam, A. Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). J. Alloys Compd. 2017, 691, 659–665. [Google Scholar] [CrossRef]
- Mehmood, U.; Ahmad, S.H.A.; Khan, A.U.H.; Qaiser, A.A. Co-sensitization of graphene/TiO2 nanocomposite thin films with ruthenizer and metal free organic photosensitizers for improving the power conversion efficiency of dye-sensitized solar cells (DSSCs). Sol. Energy 2018, 170, 47–55. [Google Scholar] [CrossRef]
- Xu, H.; Wu, X.; Li, X.; Luo, C.; Liang, F.; Orignac, E.; Zhang, J.; Chu, J. Properties of graphene-metal contacts probed by Raman spectroscopy. Carbon 2018, 127, 491–497. [Google Scholar] [CrossRef]
- Imbrogno, A.; Pandiyan, R.; Macario, A.; Bonanno, A.; El Khakani, M.A. Optimizing dye adsorption in graphene–TiO2 photoanodes for the enhancement of photoconversion efficiency of DSSC devices. IEEE J. Photovolt. 2019, 9, 1240–1248. [Google Scholar] [CrossRef]
- Zulkapli, M.F.; Rashid, N.M.; Sokri, M.N.M.; Nasri, N. Study on optical properties of graphene-TiO2 nanocomposite as photoanodes layer in dye sensitized solar cell (DSSC). Environ. Ecosyst. Sci. 2018, 2, 39–41. [Google Scholar] [CrossRef]
TiCl4 | 7550-45-0 |
TiO2 | 13463-67-7 |
Triton™ X-100 | 9002-93-1 |
Polyethylene Glycol 20,000 | 25322-68-3 |
H2O2 | 7722-84-1 |
N719 | 207347-46-4 |
Electrolyte Solution (Iodolyte HI-30) | 75-05-8 |
Graphene Powder | 1034343-98-0 |
Acetylacetone | 123-54-6 |
Indium Tin Oxide (ITO) | 50926-11-9 |
Soda Lime Glass | 8006-28-8 |
Device | VOC (V) | JSC (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|
S1: pure TiO2 layer | 0.574 ± 0.005 | 8.18 ± 0.4 | 59.6 ± 1.2 | 2.79 ± 0.03 |
S2: mixed Acac 1 mL with TiO2 layer | 0.568 ± 0.004 | 6.76 ± 0.6 | 50.4 ± 1.0 | 1.93 ± 0.01 |
S3: mixed Acac 2 mL with TiO2 layer | 0.580 ± 0.004 | 10.26 ± 0.7 | 50.3 ± 1.3 | 2.99 ± 0.04 |
S4: mixed Acac 3 mL with TiO2 layer | 0.537 ± 0.003 | 9.16 ± 0.4 | 49.5 ± 1.1 | 2.43 ± 0.02 |
Sample | D-Band | G-Band | 2D-Band | ID/IG | I2D/IG |
---|---|---|---|---|---|
Acac 2 mL + GP 0.001 wt.% | 1336.67 | 1560.21 | 2693.71 | 0.25 | 0.19 |
Acac 2 mL + GP 0.003 wt.% | 1340.75 | 1564.18 | 2705.82 | 0.53 | 0.64 |
Acac 2 mL + GP 0.005 wt.% | 1344.82 | 1572.13 | 2698.92 | 0.64 | 0.71 |
S3: Mixed Acac 2 mL with TiO2 Porous/Blocking Layer/ITO S9: Mixed Acac 2 mL and GP 0.003 wt.% with TiO2 Porous/Blocking Layer/ITO S14: Mixed Acac 2 mL and GP 0.003 wt.% with TiO2 Porous/Blocking Layer/FTO | ||||
---|---|---|---|---|
– | Voc (V) | Jsc (mA/cm2) | Fill Factor (%) | Eff. η (%) |
S3 | 0.580 ± 0.006 | 10.26 ± 0.7 | 50.3 ± 1.3 | 2.99 ± 0.02 |
S9 | 0.619 ± 0.008 | 14.81 ± 0.4 | 59.5 ± 1.1 | 5.45 ± 0.04 |
S14 | 0.593 ± 0.005 | 21.65 ± 0.6 | 56.4 ± 1.1 | 7.24 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-H.; Chuang, C.-H.; Zhong, D.-Y.; Lin, J.-C.; Sung, C.-C.; Hsu, C.-Y. Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells. Coatings 2021, 11, 796. https://doi.org/10.3390/coatings11070796
Chang C-H, Chuang C-H, Zhong D-Y, Lin J-C, Sung C-C, Hsu C-Y. Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells. Coatings. 2021; 11(7):796. https://doi.org/10.3390/coatings11070796
Chicago/Turabian StyleChang, Chun-Hao, Chia-Han Chuang, De-Yang Zhong, Jun-Cheng Lin, Chia-Chi Sung, and Chun-Yao Hsu. 2021. "Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells" Coatings 11, no. 7: 796. https://doi.org/10.3390/coatings11070796
APA StyleChang, C. -H., Chuang, C. -H., Zhong, D. -Y., Lin, J. -C., Sung, C. -C., & Hsu, C. -Y. (2021). Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells. Coatings, 11(7), 796. https://doi.org/10.3390/coatings11070796