Encapsulation of Curcumin in Persian Gum Nanoparticles: An Assessment of Physicochemical, Sensory, and Nutritional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Curcumin-Loaded PG Nanoparticles
2.2. Particle Size Measurement
2.3. Morphology
2.4. Encapsulation Efficiency (EE)
2.5. Stability Measurement
2.6. Kefir Production and Addition of Curcumin-Loaded PG Nanoparticles
2.7. Acidity and pH Measurements
2.8. Rheological Measurement
2.9. Sensory Evaluation
2.10. Animal Feeding
2.11. Serum Biochemical Profile
2.12. Statistical Analysis
3. Results and Discussions
3.1. Particle Size
3.2. TEM Micrographs
3.3. Encapsulation Efficiency
3.4. Stability
3.5. Acidity and pH of Kefir
3.6. Viscosity
3.7. Sensory Evaluation
3.8. Serum Biochemical Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazdi, S.R.; Corredig, M. Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chem. 2012, 132, 1143–1149. [Google Scholar] [CrossRef]
- Ghayour, N.; Hosseini, S.M.H.; Eskandari, M.H.; Esteghlal, S.; Nekoei, A.-R.; Gahruie, H.H.; Tatar, M.; Naghibalhossaini, F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019, 87, 394–403. [Google Scholar] [CrossRef]
- Sahu, A.; Kasoju, N.; Bora, U. Fluorescence study of the curcumin− casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 2008, 9, 2905–2912. [Google Scholar] [CrossRef]
- Bernardy, N.; Romio, A.P.; Barcelos, E.I.; Pizzol, C.D.; Dora, C.L.; Lemos-Senna, E.; Araujo, P.H.; Sayer, C. Nanoencapsulation of quercetin via miniemulsion polymerization. J. Biomed. Nanotechnol. 2010, 6, 181–186. [Google Scholar] [CrossRef]
- Bucurescu, A.; Blaga, A.C.; Estevinho, B.N.; Rocha, F. Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food Bioprocess Technol. 2018, 11, 1795–1806. [Google Scholar] [CrossRef]
- Tan, C.; Xie, J.; Zhang, X.; Cai, J.; Xia, S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 2016, 57, 236–245. [Google Scholar] [CrossRef]
- Pal, K.; Roy, S.; Parida, P.K.; Dutta, A.; Bardhan, S.; Das, S.; Jana, K.; Karmakar, P. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. Mater. Sci. Eng. C 2019, 95, 204–216. [Google Scholar] [CrossRef]
- Rezaei, A.; Nasirpour, A. Encapsulation of curcumin using electrospun almond gum nanofibers: Fabrication and characterization. Int. J. Food Prop. 2018, 21, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Pu, C.; Tang, W.; Li, X.; Li, M.; Sun, Q. Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocoll. 2019, 87, 29–37. [Google Scholar] [CrossRef]
- Dehghani, P.; Hosseini, S.M.H.; Golmakani, M.-T.; Majdinasab, M.; Esteghlal, S. Shelf-life extension of refrigerated rainbow trout fillets using total farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocoll. 2018, 77, 677–688. [Google Scholar] [CrossRef]
- Bassijeh, A.; Ansari, S.; Hosseini, S.M.H. Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and persian gum and its use as a natural colorant in a model beverage. Food Res. Int. 2020, 137, 109689. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Quek, S.Y.; Pourashouri, P.; Salaün, F. Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT 2019, 116, 108494. [Google Scholar] [CrossRef]
- Nami, Y.; Lornezhad, G.; Kiani, A.; Abdullah, N.; Haghshenas, B. Alginate-persian gum-prebiotics microencapsulation impacts on the survival rate of lactococcus lactis abriinw-n19 in orange juice. LWT 2020, 124, 109190. [Google Scholar] [CrossRef]
- Noghabi, M.S.; Molaveisi, M. Microencapsulation of persian gum as a novel wall material for the fast-release of cinnamon essential oil in the simulated saliva medium: Characterization of microcapsules and modeling the kinetics of release. Bioact. Carbohydr. Diet. Fibre 2020, 100250. [Google Scholar] [CrossRef]
- Otles, S.; Cagindi, O.E. Kefir: A probiotic dairy-composition, nutritional and therapeutic aspects. Pak. J. Nutr. 2003, 2, 54–59. [Google Scholar]
- Carullo, G.; Governa, P.; Spizzirri, U.G.; Biagi, M.; Sciubba, F.; Giorgi, G.; Loizzo, M.R.; Di Cocco, M.E.; Aiello, F.; Restuccia, D. Sangiovese cv pomace seeds extract-fortified kefir exerts anti-inflammatory activity in an in vitro model of intestinal epithelium using caco-2 cells. Antioxidants 2020, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, A.; Simonetti, A.; Gambacorta, E. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. Int. J. Dairy Technol. 2019, 72, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Semeniuc, C.A.; Rotar, A.; Stan, L.; Pop, C.R.; Socaci, S.; Mireşan, V.; Muste, S. Characterization of pine bud syrup and its effect on physicochemical and sensory properties of kefir. CyTA J. Food 2016, 14, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Mirpoor, S.F.; Hosseini, S.M.H.; Yousefi, G.H. Mixed biopolymer nanocomplexes conferred physicochemical stability and sustained release behavior to introduced curcumin. Food Hydrocoll. 2017, 71, 216–224. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Gahruie, H.H.; Eskandari, M.H.; Khalesi, M.; Van der Meeren, P.; Hosseini, S.M.H. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocoll. 2020, 101, 105489. [Google Scholar] [CrossRef]
- Hofmann, T.; Glabasnia, A.; Schwarz, B.; Wisman, K.N.; Gangwer, K.A.; Hagerman, A.E. Protein binding and astringent taste of a polymeric procyanidin, 1, 2, 3, 4, 6-penta-o-galloyl-β-d-glucopyranose, castalagin, and grandinin. J. Agric. Food Chem. 2006, 54, 9503–9509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, F.O.; Oliveira, E.F.; Paula, H.C.; de Paula, R.C. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 2012, 89, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Zhou, B.; He, L.; An, Y.; Lin, L.; Li, Y.; Liu, S.; Chen, Y.; Li, B. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Adv. 2015, 5, 13891–13900. [Google Scholar] [CrossRef]
- Jafari, Y.; Sabahi, H.; Rahaie, M. Stability and loading properties of curcumin encapsulated in chlorella vulgaris. Food Chem. 2016, 211, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Öner, Z.; Karahan, A.G.; Çakmakçı, M.L. Effects of different milk types and starter cultures on kefir. Gida 2010, 35, 177–182. [Google Scholar]
- Irigoyen, A.; Arana, I.; Castiella, M.; Torre, P.; Ibanez, F. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem. 2005, 90, 613–620. [Google Scholar] [CrossRef]
- Demirci, A.S.; Palabiyik, I.; Ozalp, S.; Tirpanci Sivri, G. Effect of using kefir in the formulation of traditional tarhana. Food Sci. Technol. 2019, 39, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Doğan, M. Rheological behaviour and physicochemical properties of kefir with honey. J. Verbrauch. Lebensm. 2011, 6, 327–332. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Effect of starter culture and inulin addition on microbial viability, texture, and chemical characteristics of whole or skim milk kefir. Food Sci. Technol. 2012, 32, 580–865. [Google Scholar] [CrossRef] [Green Version]
- Köksoy, A.; Kılıç, M. Effects of water and salt level on rheological properties of ayran, a turkish yoghurt drink. Int. Dairy J. 2003, 13, 835–839. [Google Scholar] [CrossRef]
- Tratnik, L.; BOŽANIĆ, R.; Herceg, Z.; Drgalić, I. The quality of plain and supplemented kefir from goat’s and cow’s milk. Int. J. Dairy Technol. 2006, 59, 40–46. [Google Scholar] [CrossRef]
- Shin, S.K.; Ha, T.Y.; McGregor, R.A.; Choi, M.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol. Nutr. Food Res. 2011, 55, 1829–1840. [Google Scholar] [CrossRef]
- Babu, P.S.; Srinivasan, K. Hypolipidemic action of curcumin, the active principle of turmeric (curcuma longa) in streptozotocin induced diabetic rats. Mol. Cell. Biochem. 1997, 166, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-C.; Chiu, W.-C.; Chuang, H.-L.; Tang, D.-W.; Lee, Z.-M.; Wei, L.; Chen, F.-A.; Huang, C.-C. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015, 7, 905–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. 2017, 67, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Hao, H.; Li, X.; Li, H.; Liao, Z.; Wu, Z.; Chen, H. Safety evaluation on defatted soybean particles after nanofabrication. Qual. Assur. Saf. Crops Foods 2020, 12, 87–101. [Google Scholar] [CrossRef]
- Del Carlo, M.; Fusella, G.C.; Pepe, A.; Sergi, M.; Di Martino, M.; Mascini, M.; Martino, G.; Cichelli, A.; Di Natale, C.; Compagnone, D. Novel oligopeptides based e-nose for food quality control: Application to extra-virgin olive samples. Qual. Assur. Saf. Crops Foods 2014, 6, 309–317. [Google Scholar] [CrossRef]
- Onat, S.; Savaş, E. Immobilization and characterization of glucosidase from gemlik olive (Olea europea L.) responsible for hydrolization of oleuropein. Ital. J. Food Sci. 2019, 31, 749–763. [Google Scholar]
Sample | Size (nm) | EE (%) |
---|---|---|
PG-0.5 | 397.4 ± 25.11 A | 86 ± 5.61 B |
PG-1 | 389.1 ± 11.42 A | 93 ± 3.42 A |
PG1.5 | 326 ± 24.15 B | 94 ± 4.55 A |
Sample | Light | H2O2 | pH 3 |
---|---|---|---|
Control | 59 ± 3.21 C | 22 ± 1.26 D | 57 ± 1.56 C |
PG-0.5 | 82 ± 2.12 B | 64 ± 2.36 C | 82 ± 3.51 B |
PG-1 | 91 ± 1.75 A | 76 ± 2.76 B | 87 ± 2.41 A |
PG-1.5 | 93 ± 2.25 A | 89 ± 3.65 A | 92 ± 2.76 A |
Sample | Acidity | pH | Apparent Viscosity | Consistency Coefficient | Power Law Index |
---|---|---|---|---|---|
Control | 76 ± 2.83 A | 4.05 ± 0.18 A | 1.91 ± 0.05 A | 0.062 ± 0.005 A | 0.044 |
K-1 | 74 ± 3.65 A | 4.01 ± 0.11 A | 1.92 ± 0.03 A | 0.065 ± 0.003 A | 0.045 |
K-2 | 79 ± 4.11 A | 3.99 ± 0.12 A | 1.94 ± 0.01 A | 0.069 ± 0.001 A | 0.044 |
K-3 | 72 ± 3.46 A | 4.02 ± 0.08 A | 1.97 ± 0.02 A | 0.071 ± 0.002 A | 0.046 |
Sample | TC (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | TG (mg/dL) | ALT(U/L) | AST(U/L) |
---|---|---|---|---|---|---|
Control | 184.66 ± 4.82 A | 43.74 ± 1.76 B | 120.55 ± 3.11 A | 48.52 ± 2.52 A | 31.96 ± 4.16 A | 94.12 ± 2.34 A |
K-1 | 175.62 ± 3.24 B | 45.34 ± 3.56 AB | 114.26 ± 2.64 AB | 46.28 ± 2.49 AB | 28.72 ± 3.28 A | 91.65 ± 1.76 A |
K-2 | 171.28 ± 4.11 B | 47.61 ± 2.74 A | 110.18 ± 4.29 BC | 42.19 ± 3.23 BC | 30.41 ± 4.63 A | 84.25 ± 2.11 B |
K-3 | 168.47 ± 3.19 B | 44.52 ± 2.85 AB | 107.59 ± 3.75 C | 41.43 ± 3.95 C | 28.25 ± 2.96 A | 82.39 ± 3.15 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershadi, A.; Parastouei, K.; Khaneghah, A.M.; Hadian, Z.; Lorenzo, J.M. Encapsulation of Curcumin in Persian Gum Nanoparticles: An Assessment of Physicochemical, Sensory, and Nutritional Properties. Coatings 2021, 11, 841. https://doi.org/10.3390/coatings11070841
Ershadi A, Parastouei K, Khaneghah AM, Hadian Z, Lorenzo JM. Encapsulation of Curcumin in Persian Gum Nanoparticles: An Assessment of Physicochemical, Sensory, and Nutritional Properties. Coatings. 2021; 11(7):841. https://doi.org/10.3390/coatings11070841
Chicago/Turabian StyleErshadi, Arash, Karim Parastouei, Amin Mousavi Khaneghah, Zahra Hadian, and Jose M. Lorenzo. 2021. "Encapsulation of Curcumin in Persian Gum Nanoparticles: An Assessment of Physicochemical, Sensory, and Nutritional Properties" Coatings 11, no. 7: 841. https://doi.org/10.3390/coatings11070841
APA StyleErshadi, A., Parastouei, K., Khaneghah, A. M., Hadian, Z., & Lorenzo, J. M. (2021). Encapsulation of Curcumin in Persian Gum Nanoparticles: An Assessment of Physicochemical, Sensory, and Nutritional Properties. Coatings, 11(7), 841. https://doi.org/10.3390/coatings11070841