α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of α-MnO2 Nanowires
2.2. Characterizations of the Synthesized α-MnO2 Nanowires
2.3. Fabrication of Formaldehyde Gas Sensor Based on α-MnO2 Nanowires
3. Results and Discussion
3.1. Characterizations and Properties of Synthesized α-MnO2 Nanowires
3.2. Formaldehyde Gas Sensing Properties of Synthesized α-MnO2 Nanowires
3.3. Sensing Mechanism for the Fabricated Formaldehyde Gas Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jali, M.H.; Rahim, H.R.A.; Johari, M.A.M.; Ali, U.U.M.; Johari, S.H.; Mohamed, H.; Harun, S.W.; Yasin, M. Formaldehyde sensor with enhanced performance using microsphere resonator-coupled ZnO nanorods coated glass. Opt. Laser Technol. 2021, 139, 106853. [Google Scholar] [CrossRef]
- Allouch, A.; Guglielmino, M.; Bernhardt, P.; Serra, C.A.; Le Calvé, S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sens. Actuators B Chem. 2013, 181, 551–558. [Google Scholar] [CrossRef]
- Qi, L.; Pan, Y. A novel sensor apply in detection of indoor air. Sci. Adv. Mater. 2020, 12, 282–288. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, K.; Zhang, F.; Chen, W.; Wang, Z.; Zhu, X.; Yin, J.; Li, D.; Zhu, R.; Li, K. A novel indoor air sensor apply in detecting formaldehyde. J. Nanoelectron. Optoelectron. 2020, 15, 859–863. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Wu, C.; Ye, G.; Qi, L.; Wang, Y.; Yuan, C.; Zhang, L. Novel ZnO sensor and gas detection performance in tunnel construction. J. Nanoelectron. Optoelectron. 2020, 15, 1114–1119. [Google Scholar] [CrossRef]
- Bouchikhi, B.; Chludziński, T.; Saidi, T.; Smulko, J.; El Bari, N.; Wen, H.; Ionescu, R. Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark conditions and UV light irradiation. Sens. Actuators B Chem. 2020, 320, 128331. [Google Scholar] [CrossRef]
- Choi, G.J.; Mishra, R.K.; Gwag, J.S. 2D layered MoS2 based gas sensor for indoor pollutant formaldehyde gas sensing applications. Mater. Lett. 2020, 264, 127385. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Li, Z. Supersensitive and superselective formaldehyde gas sensor based on NiO nanowires. Vacuum 2017, 143, 50–53. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zheng, J.; Li, L.; Zhu, Z. Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 2011, 258, 711–718. [Google Scholar] [CrossRef]
- Xing, X.; Xiao, X.; Wang, L.; Wang, Y. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens. Actuators B Chem. 2017, 247, 797–806. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, J.; Wang, X.; Liao, J.; Xia, H.; Akbar, S.A.; Li, J.; Lin, S.; Li, X.; Wang, J. Hierarchical structured TiO2 nano-tubes for formaldehyde sensing. Ceram. Int. 2012, 38, 6341–6347. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, X.; Zhang, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature. Sens. Actuators B Chem. 2017, 247, 664–672. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Kumar, R.; Albargi, H.; Zeng, W.; Alhmami, M.A.M.; Alsaiari, M.A.; Baskoutas, S. Gas sensor device for high-performance ethanol sensing using α-MnO2 nanoparticles. Mater. Lett. 2021, 286, 129232. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, L.-X.; Li, M.-W.; Yin, Y.-Y.; Yin, J.; Zhu, M.-Y.; Chen, J.-J.; Wang, Y.; Bie, L.-J. Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens. Actuators B Chem. 2019, 289, 186–194. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, X.; Zhang, L.; Zeng, W. High performance novel gas sensor device for site environmental protection using Ti0.5Sn0.5O2 nanomaterials. J. Nanoelectron. Optoelectron. 2020, 15, 1423–1428. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, T.X.; Hu, Y.B.; Guo, X.L.; Peng, H.H.; Zhang, Y.X.; Feng, L.; Zheng, H.L. Delta manganese dioxide nanosheets decorated magnesium wire for the degradation of methyl orange. J. Colloid Interface Sci. 2017, 490, 226–232. [Google Scholar] [CrossRef]
- Liu, C.; Navale, S.T.; Yang, Z.B.; Galluzzi, M.; Patil, V.B.; Cao, P.J.; Mane, R.S.; Stadler, F.J. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J. Alloy. Compd. 2017, 727, 362–369. [Google Scholar] [CrossRef]
- Gangwar, D.; Rath, C. Structural, optical and magnetic properties of α- and β-MnO2 nanorods. Appl. Surf. Sci. 2021, 557, 149693. [Google Scholar] [CrossRef]
- Kumar, M.; Perumbilavil, S.; Goel, A.; Philip, R. Enhanced optical nonlinearity in β-MnO2 nanowire network decorated with Ag nanoparticles. Opt. Mater. 2021, 118, 111226. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Jiang, D.; Wang, H.; Lai, W.-F.; Lv, Y.; Zhai, Y. A FRET biosensor based on MnO2 nanosphere/copper nanocluster complex: From photoluminescence quenching to recovery and magnification. Sens. Actuators B Chem. 2019, 290, 535–543. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Q.; Gao, H.; Wang, L.; Wang, L.; Zhang, A.; Song, Y.; Xia, T. Synthesis and electrochemical properties of hollow-porous MnO2-graphene micro-nano spheres for supercapacitor applications. Powder Technol. 2014, 267, 268–272. [Google Scholar] [CrossRef]
- Zahan, M.; Podder, J. Role of Fe doping on structural and electrical properties of MnO2 nanostructured thin films for glucose sensing performance. Mater. Sci. Semicond. Process. 2020, 117, 105109. [Google Scholar] [CrossRef]
- Duan, Y.; Pang, H.; Zhang, Y.; Chen, J.; Wang, T. Morphology-controlled synthesis and microwave absorption properties of β-MnO2 microncube with rectangular pyramid. Mater. Charact. 2016, 112, 206–212. [Google Scholar] [CrossRef]
- Gu, W.; Li, C.; Qiu, J.; Yao, J. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation. J. Hazard. Mater. 2021, 408, 124458. [Google Scholar] [CrossRef]
- Huang, A.; Chen, J.; Zhou, W.; Wang, A.; Chen, M.; Tian, Q.; Xu, J. Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries. J. Electroanal. Chem. 2020, 873, 114392. [Google Scholar] [CrossRef]
- Barreca, D.; Gasparotto, A.; Gri, F.; Comini, E.; Maccato, C. Plasma-assisted growth of β-MnO2 nanosystems as gas sensors for safety and food industry applications. Adv. Mater. Interfaces 2018, 5, 1800792. [Google Scholar] [CrossRef]
- Rajagopal, R.; Ryu, K.-S. Temperature controlled synthesis of CeMnO2 nanostructure: Promising electrode material for supercapacitor applications. Sci. Adv. Mater. 2020, 12, 461–469. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; He, X.; Xu, S.; Fang, M.; Zhao, X.; Shang, Y. Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochim. Acta 2014, 142, 152–156. [Google Scholar] [CrossRef]
- Guo, Z.; Mu, J.; Che, H.; Wang, G.; Liu, A.; Zhang, X.; Zhang, Z. Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 2016, 27, 13314–13322. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Qian, D.; Li, Y.; Zhang, W. Single-crystal α-MnO2 nanorods: Synthesis and electrochemical properties. Nanotechnology 2007, 18, 115616. [Google Scholar] [CrossRef]
- Umar, A.; Qamar, M.; Kumar, R.; Ibrahim, A.A.; Alhmami, M.A.M.; Almas, T.; Mohammed, A.Y.A.; Bouropoulos, N.; Baskoutas, S.; Suliman, M.H.; et al. Electrochemical oxygen evolution reaction catalyzed by cobalt oxide (Co3O4) nanodisks. Sci. Adv. Mater. 2020, 12, 1889–1895. [Google Scholar] [CrossRef]
- Umar, A.; Alduraibi, M.; Al-Dossary, O. Development of ethanol gas sensor using-Fe2O3 nanocubes synthesized by hydrothermal process. J. Nanoelectron. Optoelectron. 2020, 15, 59–64. [Google Scholar] [CrossRef]
- Shinde, P.V.; Xia, Q.X.; Ghule, B.G.; Shinde, N.M.; Seonghee, J.; Kim, K.H.; Mane, R.S. Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors. Appl. Surf. Sci. 2018, 442, 178–184. [Google Scholar] [CrossRef]
- Ramadhan, Z.R.; Yun, C.; Park, B.-I.; Yu, S.; Park, S.B.; Hong, J.; Han, J.W.; Kang, M.H.; Kim, S.; Lim, D.C.; et al. One-pot synthesis of lithium nickel manganese oxide-carbon composite nanoparticles by a flame spray pyrolysis process. Sci. Adv. Mater. 2020, 12, 263–268. [Google Scholar] [CrossRef]
- Shah, H.U.; Wang, F.; Javed, M.S.; Ahmad, M.A.; Saleem, M.; Zhan, J.; Khan, Z.U.H.; Li, Y. In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors. J. Energy Storage 2018, 17, 318–326. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, D.; Zhang, L. A novel flower like tin oxides sensor and indoor air sensing applications. J. Nanoelectron. Optoelectron. 2020, 15, 1171–1176. [Google Scholar] [CrossRef]
- Sankar Ganesh, R.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B Chem. 2018, 255, 672–683. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, J.; Shi, S.; Lin, H.; Mao, Z.; Zhang, F.; Qu, F. Boosting ppb-level triethylamine sensing of ZnO: Adjusting proportions of electron donor defects. J. Mater. Chem. C 2020, 8, 6734–6742. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Hu, Y.; Pan, S.; Jiao, Z. Conductometric n-butanol gas sensor based on Tourmaline@ZnO hierarchical micro-nanostructures. Sens. Actuators B Chem. 2021, 337, 129793. [Google Scholar] [CrossRef]
- Paolucci, V.; De Santis, J.; Lozzi, L.; Rigon, M.; Martucci, A.; Cantalini, C. ZnO thin films containing aliovalent ions for NO2 gas sensor activated by visible light. Ceram. Int. 2021, in press. [Google Scholar] [CrossRef]
- Umar, A.; Alduraibi, M.; Al-Dossary, O. NOx gas sensing properties of Fe-doped ZnO nanoparticles. Sci. Adv. Mater. 2020, 12, 908–914. [Google Scholar] [CrossRef]
- Jasinski, G. Influence of operation temperature instability on gas sensor performance. In Proceedings of the 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, Poland, 10–13 September 2017; pp. 1–4. [Google Scholar]
- Radhakrishnan, J.K.; Kumara, M. Geetika Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2. Sens. Int. 2021, 2, 100059. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, L. A novel NO2 sensor applied in natural protected area. J. Nanoelectron. Optoelectron. 2020, 15, 19–23. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, J.; Wang, L.; Li, S.; Liu, L.; Su, C.; Liu, L. High response gas sensors for formaldehyde based on Er-doped In2O3 nanotubes. J. Mater. Sci. Technol. 2015, 31, 1175–1180. [Google Scholar] [CrossRef]
- Sun, J.; Bai, S.; Tian, Y.; Zhao, Y.; Han, N.; Luo, R.; Li, D.; Chen, A. Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens. Actuators B Chem. 2018, 257, 29–36. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, B.; Zhou, Q.; He, Y.; Wang, Z.; Radacsi, N. Fe-Ddoped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde. ACS Omega 2019, 4, 10252–10262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.M.; Ma, S.Y. Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater. Lett. 2019, 236, 491–494. [Google Scholar] [CrossRef]
- Dong, C.; Liu, X.; Han, B.; Deng, S.; Xiao, X.; Wang, Y. Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B Chem. 2016, 224, 193–200. [Google Scholar] [CrossRef]
- Huang, L.; Fan, Z.; Li, X.; Wang, S.; Guo, W. Facile synthesis of CaFe2O4 nanocubes for formaldehyde sensor. Mater. Lett. 2021, 288, 129351. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Hu, R.; Qiao, Q.; Li, X. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate. Sens. Actuators B Chem. 2016, 222, 1134–1143. [Google Scholar] [CrossRef]
- Bian, Y.; Nie, L.; Wang, A.; Zhang, L.; Yue, R.; Han, N.; Chen, Y. Facile synthesis of stoichiometric InOCl mesoporous material for high performance formaldehyde gas sensors. Sens. Actuators B Chem. 2020, 319, 128078. [Google Scholar] [CrossRef]
- Lai, X.; Li, P.; Yang, T.; Tu, J.; Xue, P. Ordered array of Ag–In2O3 composite nanorods with enhanced gas-sensing properties. Scr. Mater. 2012, 67, 293–296. [Google Scholar] [CrossRef]
- San, X.; Li, M.; Liu, D.; Wang, G.; Shen, Y.; Meng, D.; Meng, F. A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J. Alloy. Compd. 2018, 739, 260–269. [Google Scholar] [CrossRef]
- Bigiani, L.; Zappa, D.; Maccato, C.; Comini, E.; Barreca, D.; Gasparotto, A. Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Appl. Surf. Sci. 2020, 512, 145667. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, L.; Wu, C. A Novel net like structure sensor and gas detection performance in tunnel construction. J. Nanoelectron. Optoelectron. 2020, 15, 54–58. [Google Scholar] [CrossRef]
Sensor Material | Conc. (ppm) | Gas Response | Response Time (s) | Recovery Time (s) | T (°C) | Refs. |
---|---|---|---|---|---|---|
SnO2 nanosheets | 10 | 20.5 | 36 | 238 | 200 | [17] |
Porous SnO2 | 10 | 50.0 | 50 | 350 | 200 | [55] |
Mesoporous InOCl | 50 | 45.0 | 18 | 47 | 200 | [56] |
Ag-In2O3 Nanowires | 85 | 152.0 | 135 | 160 | 300 | [57] |
Er-doped In2O3 nanotubes | 20 | 12.0 | 5 | 38 | 260 | [49] |
rGO/ZnSnO3 microspheres | 10 | 12.8 | 87 | 31 | 103 | [50] |
Fe-Doped ZnO/rGO Nanocomposite | 5 | 12.7 | 34 | 37 | 120 | [51] |
NiO/ZnO Microflowers | 200 | 26.2 | 18 | 30 | 100 | [58] |
SnO2/In2O3 hetero-nanofibers | 10 | 7.5 | 26 | 37 | 375 | [52] |
Ag-functionalized In2O3/ZnO | 100 | 10.0 | 20 | 4 | 300 | [53] |
CaFe2O4 nanocubes | 300 | 16.5 | 153 | 54 | 300 | [54] |
α-MnO2 Nanowire | 200 | 19.37 | 18 | 30 | 300 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umar, A.; Ibrahim, A.A.; Kumar, R.; Algadi, H.; Albargi, H.; Ahmad, F.; Zeng, W.; Akhtar, M.S. α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device. Coatings 2021, 11, 860. https://doi.org/10.3390/coatings11070860
Umar A, Ibrahim AA, Kumar R, Algadi H, Albargi H, Ahmad F, Zeng W, Akhtar MS. α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device. Coatings. 2021; 11(7):860. https://doi.org/10.3390/coatings11070860
Chicago/Turabian StyleUmar, Ahmad, Ahmed A. Ibrahim, Rajesh Kumar, Hassan Algadi, Hasan Albargi, Faheem Ahmad, Wen Zeng, and M. Shaheer Akhtar. 2021. "α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device" Coatings 11, no. 7: 860. https://doi.org/10.3390/coatings11070860
APA StyleUmar, A., Ibrahim, A. A., Kumar, R., Algadi, H., Albargi, H., Ahmad, F., Zeng, W., & Akhtar, M. S. (2021). α-MnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device. Coatings, 11(7), 860. https://doi.org/10.3390/coatings11070860