Ecofriendly Water-Based Solution Processing: Preliminary Studies of Zn-ZrO2 Thin Films for Microelectronics Applications
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials and Thin Film Deposition
2.2. Characterization and Data Analysis
3. Results and Discussions
3.1. Structure and Surface Morphology Studies
3.1.1. XRD Studies
3.1.2. Raman Spectroscopy Studies
3.1.3. AFM Studies
3.1.4. SEM Studies
3.2. Optical Properties
3.2.1. UV-Vis Optical Transmittance Analysis
3.2.2. Spectroscopic Ellipsometry (SE) Analysis: Optical Constants
3.2.3. Photoluminescence (PL) Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashir, A.; Wöbkenberg, P.H.; Smith, J.; Ball, J.M.; Adamopoulos, G.; Bradley, D.D.C.; Anthopoulos, T.D. High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv. Mater. 2009, 21, 2226–2231. [Google Scholar] [CrossRef]
- Chen, D.; Xu, J.; Shen, G. Fully transparent flexible transistors built on metal oxide nanowires. Front. Optoelectron. China 2010, 3, 217–227. [Google Scholar] [CrossRef]
- Görrn, P.; Sander, M.; Meyer, J.; Kröger, M.; Becker, E.; Johannes, H.-H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741. [Google Scholar] [CrossRef]
- Glynn, C.; O’Dwyer, C. Solution processable metal oxide thin film deposition and material growth for electronic and photonic devices. Adv. Mater. Interfaces 2017, 4, 1600610. [Google Scholar] [CrossRef]
- Balog, M.; Schieber, M.; Michman, M.; Patai, S. The chemical vapour deposition and characterization of ZrO2 films from organometallic compounds. Thin Solid Film. 1977, 47, 109–120. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Photocatalytic activity of nanostructured ZnO–ZrO2 binary oxide using fluorometric method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 487–492. [Google Scholar] [CrossRef]
- Liu, G.X.; Liu, A.; Shan, F.K.; Meng, Y.; Shin, B.C.; Fortunato, E.; Martins, R. High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Appl. Phys. Lett. 2014, 105, 113509. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Katerski, A.; Carlos, E.; Branquinho, R.; Mere, A.; Krunks, M.; Fortunato, E.; Pereira, L.; Oja Acik, I. Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor. J. Mater. Chem. C 2020, 8, 3730–3739. [Google Scholar] [CrossRef]
- Zegtouf, H.; Saoula, N.; Azibi, M.; Bait, L.; Madaoui, N.; Khelladi, M.R.; Kechouane, M. A study of properties of ZrO2 thin films deposited by magnetron sputtering under different plasma parameters: Biomedical application. J. Electr. Eng. 2019, 70, 117. [Google Scholar] [CrossRef] [Green Version]
- Häfele, E.; Kaltenmaier, K.; Schönauer, U. Application of the ZrO2 sensor in determination of pollutant gases. Sens. Actuators B Chem. 1991, 4, 525–527. [Google Scholar] [CrossRef]
- Khan, M.A.; Gondal, M.A.; Khawaja, E.E. A gas pressure sensor based on ZrO2 thin films for use at high temperatures. Int. J. Electron. 2000, 87, 227–234. [Google Scholar] [CrossRef]
- Velumani, M.; Meher, S.R.; Balakrishnan, L.; Sivacoumar, R.; Alex, Z.C. ZrO2-ZnO composite thin films for humidity sensing. In Proceedings of the AIP Conference, Uttar Pradesh, India, 21–25 December 2016; p. 080032. [Google Scholar]
- Stefanov, P.; Atanasova, G.; Marinova, T.; Gómez-García, J.; Sanz, J.M.; Caballero, A.; Morales, J.J.; Cordón, A.M.; González-Elipe, A.R. Characterization of Co/ZrO2 de-NOx thin film catalysts prepared by magnetron sputtering. Cata. Lett. 2003, 90, 195–203. [Google Scholar] [CrossRef]
- You, Q.; Cai, H.; Hu, Z.; Liang, P.; Prucnal, S.; Zhou, S.; Sun, J.; Xu, N.; Wu, J. Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al–N co-doping. J. Alloys Compd. 2015, 644, 528–533. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide-from synthesis to application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Yoshida, O.; Suzuki, H. ZnO-ZrO2 films with good UV-shielding properties prepared by a single step sol-gel method. J. Ceram. Soc. Jpn. 2009, 117, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Uribe López, M.C.; Alvarez Lemus, M.A.; Hidalgo, M.C.; López González, R.; Quintana Owen, P.; Oros-Ruiz, S.; Uribe López, S.A.; Acosta, J. Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J. Nanomater. 2019, 2019, 1015876. [Google Scholar] [CrossRef] [Green Version]
- Aghabeygi, S.; Khademi-Shamami, M. ZnO/ZrO2 nanocomposite: Sonosynthesis, characterization and its application for wastewater treatment. Ultrason. Sonochem. 2018, 41, 458–465. [Google Scholar] [CrossRef]
- Precious Ayanwale, A.; Reyes-López, S.Y. ZrO2–ZnO nanoparticles as antibacterial agents. ACS Omega. 2019, 4, 19216–19224. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.; Ashraf, A.; Imtiaz, M.; Riaz, S.; Naseem, S. Synthesis and Characterization of ZrO2-ZnO Nanoparticles. In Proceedings of the World Congress on Advances in Nano Biomechanics, Robotics and Energy Research (ANBRE), Seoul, Korea, 25–28 August 2013. [Google Scholar]
- Li, Y.; Liu, M. Gas sensing properties of Y-doped ZnO nanosheets synthesized via combustion method. Trans. Nonferrous. Met. Soc. 2015, 25, 2247–2252. [Google Scholar] [CrossRef]
- Meyers, S.T.; Anderson, J.T.; Hung, C.M.; Thompson, J.; Wager, J.F.; Keszler, D.A. Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 2008, 130, 17603–17609. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Farooq, M.; Malik, A.; Naseem, S.; Bhatti, A.S. UV-a treatment of ZrO2 thin films fabricated by environmental friendlier water-based solution processing: Structural and optical studies. Coatings 2021, 11, 821. [Google Scholar] [CrossRef]
- Bashir, A.; Majeed, A.; Naseem, S.; Bhatti, A.S. Investigation of structural and optical parameters of yttrium-doped ZnO thin films prepared via spin coating of simple aqueous solution. Bull. Mater. Sci. 2021, 44, 95. [Google Scholar] [CrossRef]
- Keramidas, V.G.; White, W.B. Raman scattering study of the crystallization and phase transformations of ZrO2. J. Am. Ceram. Soc. 1974, 57, 22–24. [Google Scholar] [CrossRef]
- Méndez-López, A.; Zelaya-Ángel, O.; Toledano-Ayala, M.; Torres-Pacheco, I.; Pérez-Robles, J.F.; Acosta-Silva, Y.J. The influence of annealing temperature on the structural and optical properties of ZrO2 thin films and how affects the hydrophilicity. Crystals 2020, 10, 454. [Google Scholar] [CrossRef]
- Li, Z.; Su, K. The direct reaction between CO2 and phenol catalyzed by bifunctional catalyst ZrO2. J. Mol. Catal. A Chem. 2007, 277, 180–184. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, C.; Lin, J. Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol−gel process. J. Phys. Chem. C 2007, 111, 3300–3307. [Google Scholar] [CrossRef]
- Ariza, R.; Dael, M.; Sotillo, B.; Urbieta, A.; Solis, J.; Fernández, P. Vapor-solid growth ZnO:ZrO2 micro and nanocomposites. J. Alloys Compd. 2021, 877, 160219. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Effect of annealing temperatures on properties of sol-gel grown ZnO-ZrO2 films. Cryst. Res. Technol. 2010, 45, 1154–1160. [Google Scholar] [CrossRef]
- Ji, P.; Mao, Z.; Wang, Z.; Xue, X.; Zhang, Y.; Lv, J.; Shi, X. Improved surface-enhanced raman scattering properties of ZrO2 nanoparticles by Zn doping. Nanomaterials 2019, 9, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorin, A.; Copperwhite, R.; Elmaghrum, S.; Mc Donagh, C.; Oubaha, M. Hybrid zirconium sol-gel thin films with high refractive index. In Proceedings of the SPIE International Symposium on Photoelectronic Detection and Imaging: Sensor and Micromachined Optical Device Technologies, Beijing, China, 8 September 2011. [Google Scholar]
- Benyagoub, A.; Levesque, F.; Couvreur, F.; Gibert-Mougel, C.; Dufour, C.; Paumier, E. Evidence of a phase transition induced in zirconia by high energy heavy ions. Appl. Phys. Lett. 2000, 77, 3197–3199. [Google Scholar] [CrossRef]
- Strekalovskii, V.N.; Vovkotrub, É.G. Raman spectroscopy of materials based on zirconium dioxide. Refractories 1985, 26, 151–162. [Google Scholar] [CrossRef]
- Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K.; Kabashin, A.; Belova, L. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering. Semicond. Sci. Tech. 2017, 33, 025004. [Google Scholar] [CrossRef]
- Kunj, S.; Sreenivas, K. Residual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substrates. Curr. Appl. Phys. 2016, 16, 748–756. [Google Scholar] [CrossRef]
- Patel, U.S.; Patel, K.H.; Chauhan, K.V.; Chawla, A.K.; Rawal, S.K. Investigation of various properties for zirconium oxide films synthesized by sputtering. Procedia Technol. 2016, 23, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Nakabayashi, H.; Terasawa, T.; Masugata, K. Atomic force microscopy observation of TiO2 films deposited by dc reactive sputtering. J. Vac. Sci. Technol. A 2002, 20, 1205–1209. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 2013, 103, 033518. [Google Scholar] [CrossRef] [Green Version]
- Hojabri, A. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates. J. Theor. Appl. Phys. 2016, 10, 219–224. [Google Scholar] [CrossRef] [Green Version]
- French, R.H.; Glass, S.J.; Ohuchi, F.S.; Xu, Y.N.; Ching, W.Y. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 1994, 49, 5133–5142. [Google Scholar] [CrossRef] [PubMed]
- Navio, J.A.; Hidalgo, M.C.; Colon, G.; Botta, S.G.; Litter, M.I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol−gel technique. Langmuir 2001, 17, 202–210. [Google Scholar] [CrossRef]
- Pan, Y.; Inam, F.; Zhang, M.; Drabold, D.A. Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 2008, 100, 206403. [Google Scholar] [CrossRef] [Green Version]
- Harrop, P.J.; Wanklyn, J.N. The dielectric constant of zirconia. Br. J. Appl. Phys. 1967, 18, 739–742. [Google Scholar] [CrossRef]
- Yusoh, R.; Horprathum, M.; Eiamchai, P.; Chindaudom, P.; Aiempanakit, K. Determination of optical and physical properties of ZrO2 films by spectroscopic ellipsometry. Procedia Eng. 2012, 32, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yoon, J.J.; Lee, S.M.; Kim, T.J.; Hwang, S.Y.; Diware, M.; Kim, Y.D.; Hwang, S.M.; Joo, J. Optical study of sol-gel processed ZrO2/Si films by spectroscopic ellipsometry. J. Vac. Sci. Technol. B 2011, 29, 04D108. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, F.; Xu, K.W.; Liang, H.F. Optical properties and structural characterization of bias sputtered ZrO2 films. J. Alloys Compd. 2008, 453, 453–457. [Google Scholar] [CrossRef]
- Sunke, V.; Bukke, G.N.; Suda, U. Characterisation of nanostructured ZrO2 thin films formed by DC reactive magnetron sputtering. J. Nanomed. Res. 2018, 7, 65–68. [Google Scholar]
- Southwell, W.H.; Hall, R.L. Rugate filter sidelobe suppression using quintic and rugated quintic matching layers. Appl. Opt. 1989, 28, 2949–2951. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, E.; Oton, C.J.; Capuj, N.E.; Ghulinyan, M.; Navarro-Urrios, D.; Gaburro, Z.; Pavesi, L. Porous silicon-based rugate filters. Appl. Opt. 2005, 44, 5415–5421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sal’nikov, V.V. Influence of F centers on the optical and adsorptive properties of doped ZrO2 crystals. Inorg. Mater. 2000, 36, 479–483. [Google Scholar] [CrossRef]
- Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A. High-rate reactive magnetron sputtering of zirconia films for laser optics applications. Appl. Phys. A 2014, 116, 1229–1240. [Google Scholar] [CrossRef]
- Sayan, S.; Nguyen, N.V.; Ehrstein, J.; Emge, T.; Garfunkel, E.; Croft, M.; Zhao, X.; Vanderbilt, D.; Levin, I.; Gusev, E.P.; et al. Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon. Appl. Phys. Lett. 2005, 86, 152902. [Google Scholar] [CrossRef] [Green Version]
- An, I.; Lee, S.; Kang, B.; Lee, S.; Jeong, H.; Song, C. Optical, electrical, and structural properties of ultrathin zirconium-oxide films. J. Korean Phys. Soc. 2010, 57, 1811–1815. [Google Scholar] [CrossRef]
- Arsenev, P.A.; Bagdasarov, K.S.; Niklas, A.; Ryazantsev, A.D. X-ray and thermostimulated luminescence of 0.9 ZrO2–0.1 Y2O3 single crystals. Phys. Status. Solidi (a) 1980, 62, 395–398. [Google Scholar] [CrossRef]
- Cong, Y.; Li, B.; Lei, B.; Li, W. Long lasting phosphorescent properties of Ti doped ZrO2. J. Lumin. 2007, 126, 822–826. [Google Scholar] [CrossRef]
- Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth. Des. 2009, 9, 3874–3880. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Fu, Z.; Dong, W.; Yang, Y.; Liu, W. UV–blue photoluminescence from ZrO2 nanopowders prepared via glycine nitrate process. Appl. Phys. A 2005, 81, 691–694. [Google Scholar] [CrossRef]
- Pattanaik, S.; Martha, S.; Sharma, M.K.; Pradhan, S.K.; Sakthivel, R.; Chatterjee, R.; Mishra, D.K. Enhancement of room temperature ferromagnetism in nanocrystalline Zr1−xMnxO2 by the suppression of monoclinic structure of zirconia. J. Magn. Magn. Mater. 2020, 494, 165768. [Google Scholar] [CrossRef]
- Imparato, C.; Fantauzzi, M.; Passiu, C.; Rea, I.; Ricca, C.; Aschauer, U.; Sannino, F.; D’Errico, G.; De Stefano, L.; Rossi, A.; et al. Unraveling the charge state of oxygen vacancies in ZrO2–x on the basis of synergistic computational and experimental evidence. J. Phys. Chem. C 2019, 123, 11581–11590. [Google Scholar] [CrossRef]
Sample ID | Zn Content (at.%) | Grain Size (nm) | Roughness | ZnO-A1 LO Raman Mode (cm−1) | Fwhm-A1 LO Mode (cm−1) | |
---|---|---|---|---|---|---|
Rq(nm) | Ra(nm) | |||||
ZrO2 | 0 | - | 1.59 | 1.15 | - | - |
ZrZ10 | 10 | 23.25 | 1.97 | 1.26 | 562.78 | 114.98 ± 19.40 |
ZrZ15 | 15 | 15.50 | 1.88 | 1.32 | 561.90 | 16.02 ± 4.82 |
ZrZ20 | 20 | 38.09 | 2.18 | 1.53 | 576.93 | 312.80 ± 71.25 |
Sample ID | Thickness (nm) | Transmittance T (%) | Eg (eV) | Eu (eV) | n at 632 nm | k at 632 nm |
---|---|---|---|---|---|---|
ZrO2 | 68.64 | 83 | 5.21 | 0.69 | 2.98 | 0.21 |
ZrZ10 | 70.00 | 86 | 4.27 | 1.91 | 2.88 | 0.19 |
ZrZ15 | 71.50 | 81 | 4.00 | 3.04 | 2.67 | 0.17 |
ZrZ20 | 71.52 | 85 | 4.66 | 3.36 | 2.60 | 0.16 |
Sample ID | Peak 1 (nm) FWHM (nm) | Peak 2 (nm) FWHM (nm) | Peak 3 (nm) FWHM (nm) | UV/Vis Ratio |
---|---|---|---|---|
ZrO2 | 344 | 431 | 478 | 4.92 ± 0.48 |
12.5 ± 0.1 | 52.5 ± 2.5 | 92.8 ± 5.5 | - | |
ZrZ10 | 343 | 428 | 474 | 5.33 ± 0.5 |
13.1 ± 0.1 | 53.8 ± 2.5 | 87.7 ± 4.9 | - | |
ZrZ15 | 343 | 430 | 474 | 5.00± 0.47 |
13.1 ± 0.1 | 52.9 ± 2.4 | 84.9 ± 1.9 | - | |
ZrZ20 | 343 | 430 | 474 | 4.25 ± 0.5 |
12.9 ± 0.1 | 54.32 ± 2.1 | 80.37 ± 4.2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, A.; Siddiqui, H.; Naseem, S.; Bhatti, A.S. Ecofriendly Water-Based Solution Processing: Preliminary Studies of Zn-ZrO2 Thin Films for Microelectronics Applications. Coatings 2021, 11, 901. https://doi.org/10.3390/coatings11080901
Bashir A, Siddiqui H, Naseem S, Bhatti AS. Ecofriendly Water-Based Solution Processing: Preliminary Studies of Zn-ZrO2 Thin Films for Microelectronics Applications. Coatings. 2021; 11(8):901. https://doi.org/10.3390/coatings11080901
Chicago/Turabian StyleBashir, Aneeqa, Hina Siddiqui, Shahzad Naseem, and Arshad Saleem Bhatti. 2021. "Ecofriendly Water-Based Solution Processing: Preliminary Studies of Zn-ZrO2 Thin Films for Microelectronics Applications" Coatings 11, no. 8: 901. https://doi.org/10.3390/coatings11080901
APA StyleBashir, A., Siddiqui, H., Naseem, S., & Bhatti, A. S. (2021). Ecofriendly Water-Based Solution Processing: Preliminary Studies of Zn-ZrO2 Thin Films for Microelectronics Applications. Coatings, 11(8), 901. https://doi.org/10.3390/coatings11080901