Ca-Doped ZnO:Al Thin Films: Synthesis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ca-Doped ZnO:Al Thin Film Synthesis
2.2. Characterization of the Thin Films
3. Results and Discussions
3.1. The Morphology Features and Chemical Composition
3.2. Structural Analysis
3.3. Photoluminescence Emission Studies
3.4. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Song, J.; Zhang, J.; Zheng, G.; Duan, X.; Xie, X.; Han, B.; Meng, X.; Yang, F.; Wang, G.; et al. Effect of substrate temperature on F and Al co-doped ZnO films deposited by radio frequency magnetron sputtering. Sol. Energy 2019, 194, 471–477. [Google Scholar] [CrossRef]
- Miyata, T.; Tokunaga, H.; Watanabe, K.; Ikenaga, N.; Minami, T. Photovoltaic properties of low-damage magnetron-sputtered n-type ZnO thin film/p-type Cu2O sheet heterojunction solar cells. Thin Solid Film. 2020, 697, 137825. [Google Scholar] [CrossRef]
- Carcia, P.F.; McLean, R.S.; Reilly, M.H.; Nunes, G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 2003, 82, 1117–1119. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S. Preparation and characterization of Mg, Al and Ga co-doped ZnO transparent conductive films deposited by magnetron sputtering. Results Phys. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Ebrahimifard, R.; Golobostanfard, M.R.; Abdizadeh, H. Sol-gel derived Al and Ga codoped ZnO thin films: An optoelectronic study. Appl. Surf. Sci. 2014, 290, 252–259. [Google Scholar] [CrossRef]
- Wietler, T.F.; Min, B.; Reiter, S.; Larionova, Y.; Reineke-Koch, R.; Heinemeyer, F.; Brendel, R.; Feldhoff, A.; Krugener, J.; Tetzlaff, D.; et al. High Temperature Annealing of ZnO:Al on Passivating POLO Junctions: Impact on Transparency, Conductivity, Junction Passivation, and Interface, Stability. IEEE J. Photovolt. 2019, 9, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Mahdhi, H.; Ben Ayadi, Z.; Djessas, K. Physical properties of metal-doped ZnO thin films prepared by RF magnetron sputtering at room temperature. J. Solid State Electrochem. 2019, 23, 3217–3224. [Google Scholar] [CrossRef]
- Lee, W.; Shin, S.; Jung, D.R.; Kim, J.; Nahm, C.; Moon, T.; Park, B. Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films. Curr. Appl. Phys. 2012, 12, 628–631. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Pai, K.-C. Properties of Al-Ga co-doped ZnO semiconductor thin films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering. Thin Solid Film. 2018, 654, 11–15. [Google Scholar] [CrossRef]
- Correia, F.C.; Ribeiro, J.M.; Kuzmin, A.; Pudza, I.; Kalinko, A.; Welter, E.; Mendes, A.; Rodrigues, J.; Ben Sedrine, N.; Monteiro, T.; et al. The role of Ga and Bi doping on the local structure of transparent zinc oxide thin films. J. Alloy. Compd. 2021, 870, 159489. [Google Scholar] [CrossRef]
- Sun, H.; Chen, S.-C.; Wang, C.-H.; Lin, Y.-W.; Wen, C.-K.; Chuang, T.-H.; Wang, X.; Lin, S.-S.; Dai, M.-J. Electrical and magnetic properties of (Al, Co) co-doped ZnO films deposited by RF magnetron sputtering. Surf. Coat. Technol. 2019, 359, 390–395. [Google Scholar] [CrossRef]
- Wang, F.-H.; Chang, C.-L. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering. Appl. Surf. Sci. 2016, 370, 83–91. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Chen, G.D.; Ye, H.G.; Walsh, A.; Moon, C.Y.; Wei, S.H. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B 2008, 77, 245209-1–245209-7. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.H.; Jeon, Y.; Choi, K.C. Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as Indium tin oxide-free electrodes for organic electronics. ACS Appl. Mater. Inter. 2018, 10, 32387–32396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Qin, G.; Ruan, H.; Huang, Z.; Wu, F.; Kong, C.; Fang, L. Role of zinc interstitial defects in indium and magnesium codoped ZnO transparent conducting films. Appl. Surf. Sci. 2019, 492, 392–398. [Google Scholar] [CrossRef]
- Dhahri, R.; Leonardi, S.G.; Hjiri, M.; El Mir, L.; Bonavita, A.; Donato, N.; Iannazzo, D.; Neri, G. Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sens. Actuators B Chem. 2017, 239, 36–44. [Google Scholar] [CrossRef]
- Visali, P.; Bhuvaneswari, R. Photoluminescence and enhanced photocatalytic activity of ZnO nanoparticles through incorporation of metal dopants Al and Ca. Optik 2020, 202, 1–7. [Google Scholar] [CrossRef]
- Kaźmierczak-Bałata, A.; Bodzenta, J.; Guziewicz, M. Microscopic investigations of morphology and thermal properties of ZnO thin films grown by atomic layer deposition method. Ultramicroscopy 2020, 210, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.; Closset, R. Structural and optical characterization of nitrogen and gallium co-doped ZnO thin films, deposited by sol-gel method. J. Mol. Struct. 2020, 1206, 1–11. [Google Scholar] [CrossRef]
- Ravichandran, K.; Jansi Santhosam, A.; Sridharan, M. Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Drewelow, G.; Song, H.W.; Jiang, Z.-T.; Lee, S. Factors controlling conductivity of PEDOT deposited using oxidative chemical vapor deposition. Appl. Surf. Sci. 2020, 501, 1–8. [Google Scholar] [CrossRef]
- Vasin, A.V.; Rusavsky, A.V.; Bortchagovsky, E.G.; Gomeniuk, Y.V.; Nikolenko, A.S.; Strelchuk, V.V.; Yatskiv, R.; Tiagulskyi, S.; Prucnal, S.; Skorupa, W.; et al. Methane as a novel doping precursor for deposition of highly conductive ZnO thin films by magnetron sputtering. Vacuum 2020, 174, 1–6. [Google Scholar] [CrossRef]
- Andolsi, Y.; Chaabouni, F. Optoelectronic properties of Cr doped ZnO thin films deposited by RF magnetron sputtering using a powder target. J. Alloy. Compd. 2020, 818, 1–8. [Google Scholar] [CrossRef]
- Han, Y.; Yang, T.; Chen, Y. A perspective on morphology controlled synthesis of powder by tuning chemical diffusion and reaction. Adv. Powder Technol. 2019, 31, 922–925. [Google Scholar] [CrossRef]
- Otieno, F.; Airo, M.; Ganetsos, T.; Erasmus, R.M.; Billing, D.G.; Quandt, A.; Wamwangi, D. Role of oxygen concentrations on structural and optical properties of RF magnetron sputtered ZnO thin films. Opt. Quant. Electron. 2019, 51, 359. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Waseda, K.; Matsubara, Y.; Shinoda, E. X-ray Diffraction Crystallography, 1st ed.; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Lee, J.K.; Park, S.; Ryu, B.; Lee, H.S.; Park, J.; Park, S. Effect of defect interactions with interstitial Ag in the lattice of BixSb2−xTe3 alloys and their thermoelectric properties. Appl. Phys. Lett. 2021, 118, 052102. [Google Scholar] [CrossRef]
- Wu, P.; Zhong, J.; Emanetoglu, N.W.; Chen, Y.; Muthukumar, S.; Lu, Y. Diffusion in epitaxial (1120) ZnO thin films. J. Electron. Mater. 2004, 33, 596–599. [Google Scholar] [CrossRef]
- Lu, Y.-F.; Lan, W.-H.; Wang, M.-C.; Shih, M.-C.; Kuo, H.-H.; Feng, D.J.-Y.; Chiu, Y.-J.; Hung, Y., Jr.; Yang, C.-F. Carrier concentration of calcium zinc oxide with different calcium contents deposited through spray pyrolysis. Microsyst. Technol. 2018, 24, 4267–4272. [Google Scholar] [CrossRef]
- Simimol, A.; Anappara Aji, A.; Barshilia, H.C. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings. Mater. Res. Express 2017, 4, 1–11. [Google Scholar] [CrossRef]
Film | Mean Crystallite Size (nm)—ZnAl2O4 | Lattice Constant (Å) ZnAl2O4 | Lattice Constant (Å) ZnO |
---|---|---|---|
ZnO:2Al | 30.2 | a = b = c = 8.08 | a = b = 3.24; c = 5.20 |
ZnO:1Ca,2Al | 20.1 | a = b = c = 8.08 | a = b = 3.28; c = 5.25 |
ZnO:3Ca,2Al | 19.1 | a = b = c = 8.08 | a = b =3.28; c = 5.25 |
ZnO:5Ca,2Al | 18.7 | a = b = c = 8.08 | a = b = 3.28; c = 5.25 |
Film | λPeak (nm) | E0 (eV) | ||
---|---|---|---|---|
ZnO:2Al | 378 | - | 545 | 3.28 |
ZnO:1Ca,2Al | 378 | 430 | 570 | 3.28 |
ZnO:3Ca,2Al | 379 | 432 | 570 | 3.27 |
ZnO:5Ca,2Al | 380 | 433 | 580 | 3.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istrate, A.-I.; Mihalache, I.; Romanitan, C.; Tutunaru, O.; Vulpe, S.; Nastase, F.; Veca, L.M. Ca-Doped ZnO:Al Thin Films: Synthesis and Characterization. Coatings 2021, 11, 1023. https://doi.org/10.3390/coatings11091023
Istrate A-I, Mihalache I, Romanitan C, Tutunaru O, Vulpe S, Nastase F, Veca LM. Ca-Doped ZnO:Al Thin Films: Synthesis and Characterization. Coatings. 2021; 11(9):1023. https://doi.org/10.3390/coatings11091023
Chicago/Turabian StyleIstrate, Anca-Ionela, Iuliana Mihalache, Cosmin Romanitan, Oana Tutunaru, Silviu Vulpe, Florin Nastase, and Lucia Monica Veca. 2021. "Ca-Doped ZnO:Al Thin Films: Synthesis and Characterization" Coatings 11, no. 9: 1023. https://doi.org/10.3390/coatings11091023
APA StyleIstrate, A. -I., Mihalache, I., Romanitan, C., Tutunaru, O., Vulpe, S., Nastase, F., & Veca, L. M. (2021). Ca-Doped ZnO:Al Thin Films: Synthesis and Characterization. Coatings, 11(9), 1023. https://doi.org/10.3390/coatings11091023